Skip to main content

Abstract

Constant deterioration of soil quality due to the extensive use of pernicious chemical fertilisers has become a global concern, which not only restrains crop yield and quality but also has critical ecological consequences. Because of the toxic and non-biodegradable properties of such synthetic fertilisers, the quality of arable land is declining day by day along with the nutrient content of vegetation all around the world. Biofertilisers are innocuous substitutes of harmful synthetic fertilisers, which have an efficient potential for attaining sustainable agricultural development. Nowadays, biofertilisers play a major role in improving the quality and quantity of crop production as well as in the continuous maintenance of physiochemical properties of soil and fertility, which is mandatory for fulfilling the global rising demand for food. Beneficial microbial inoculants, being the main constituent of biofertilisers, associate with the crop plants symbiotically and enhance their growth, yield, development and resistance against various biotic and abiotic stresses. Many of the vital nutrient requirements for the proper growth of plant such as phosphorous, zinc, potassium, nitrogen, etc. are naturally available in complex and unsolubilised forms in soil. However, certain nutrient-solubilising microbes like endophytes, rhizospheric bacteria, etc. have the property of solubilising such minerals by making them readily available to plants. Moreover, transformation in nanosizing and nanofortification of plant biomass like algae and microbial inoculants lead to the invention of biofertilisers, which have the potential to facilitate increased nutrient bioavailability to plants. This chapter discusses the potential of various types of biofertilisers with preference to their mode of application, action and their role in the improvement of crop yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):e0902–e0902

    Article  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    Article  Google Scholar 

  • Ali AM, Awad MY, Hegab SA, Gawad AMAE, Eissa MA (2021) Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J Plant Nutr 44(3):411–420

    Article  Google Scholar 

  • Anderson CR, Bruil J, Chappell MJ, Kiss C, Pimbert MP (2021) Agroecology now!: transformations towards more just and sustainable food systems. Springer Nature, p 199

    Book  Google Scholar 

  • Antoun H (2012) Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Eng 46:62–67

    Article  Google Scholar 

  • Aslam MM, Karanja JK, Dodd IC, Waseem M, Weifeng X (2022) Rhizosheath: an adaptive root trait to improve plant tolerance to phosphorus and water deficits? Plant Cell Environ 45(10):2861–2874

    Article  PubMed  PubMed Central  Google Scholar 

  • Asoegwu CR, Awuchi CG, Nelson K, Orji CG, Nwosu OU, Egbufor UC, Awuchi CG (2020) A review on the role of biofertilizers in reducing soil pollution and increasing soil nutrients. Himalayan J Agric 1:34–38

    Google Scholar 

  • Aung KLN (2011) Effect of Spirulina biofertilizer suspension on growth and yield of Vigna radiata (L.) Wilczek. Univ Res J 4(1):351–363

    Google Scholar 

  • Bala N, Dey A, Das S, Basu R, Nandy P (2014) Effect of hydroxyapatite nanorod on chickpea (Cicer arietinum) plant growth and its possible use as nano-fertilizer. Iran J Plant Physiol 4(3):1061–1069

    Google Scholar 

  • Bamisile BS, Siddiqui JA, Akutse KS, Ramos Aguila LC, Xu Y (2021) General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plan Theory 10(10):2119

    Google Scholar 

  • Barkai-Golan R (2001) Postharvest diseases of fruits and vegetables: development and control. Elsevier

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1):1–33

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  PubMed  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723

    Article  PubMed  Google Scholar 

  • Bumandalai O, Tserennadmid R (2019) Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds. Int J Aquat Biol 7(2):95–99

    Google Scholar 

  • Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de La Luz Mora M (2018) Smart fertilizers as a strategy for sustainable agriculture. Adv Agron 147:119–157

    Article  Google Scholar 

  • Campos EV, Proença PL, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF (2019) Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic 105:483–495

    Article  Google Scholar 

  • Carmona-Hernandez S, Reyes-Pérez JJ, Chiquito-Contreras RG, Rincon-Enriquez G, Cerdan-Cabrera CR, Hernandez-Montiel LG (2019) Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 9(3):121

    Article  Google Scholar 

  • Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  Google Scholar 

  • Chakraborty I, Chattopadhyay A (2018) Pre-and post-harvest losses in vegetables. In: Advances in postharvest technologies of vegetable crops. CRC Press, Boca Raton, FL, pp 25–87

    Chapter  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100(4):1648–1658

    Article  PubMed  Google Scholar 

  • Chew KW, Chia SR, Yen HW, Nomanbhay S, Ho YC, Show PL (2019) Transformation of biomass waste into sustainable organic fertilizers. Sustainability 11(8):2266

    Article  Google Scholar 

  • Devaney L, Henchion M, Regan Á (2017) Good governance in the bioeconomy. EuroChoices 16(2):41–46

    Article  Google Scholar 

  • Dias T, Dukes A, Antunes PM (2015) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric 95(3):447–454

    Article  PubMed  Google Scholar 

  • Din M, Nelofer R, Salman M, Khan FH, Khan A, Ahmad M, Jalil F, Din JU, Khan M (2019) Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol Rep 22:e00323

    Article  Google Scholar 

  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P (2018) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization 9(5):793–800

    Article  Google Scholar 

  • El-Bassi L, Azzaz AA, Jellali S, Akrout H, Marks EA, Ghimbeu CM, Jeguirim M (2021) Application of olive mill waste-based biochars in agriculture: impact on soil properties, enzymatic activities and tomato growth. Sci Total Environ 755:142531

    Article  PubMed  Google Scholar 

  • El-Halfawi MH, Ibrahim SA, Kandil H, Niculită M, Rusu C (2010) Influence of elemental sulphur, organic matter, sulfur oxidizing bacteria and cabronite alone or in combination on cowpea plants and the used soil. Factori °i Procese Pedogenetice din Zona Temperatã 9 S. nouã, pp 13–29

    Google Scholar 

  • El-Sawah AM, El-Keblawy A, Ali DFI, Ibrahim HM, El-Sheikh MA, Sharma A, Alhaj Hamoud Y, Shaghaleh H, Brestic M, Skalicky M, Xiong YC (2021) Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 11(3):194

    Article  Google Scholar 

  • Essa AM, Ibrahim WM, Mahmud RM, ElKassim NA (2015) Potential impact of cyanobacterial exudates on seed germination and antioxidant enzymes of crop plant seedlings. Int J Curr Microbiol App Sci 4(6):1010–1024

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28(2):1051–1061

    Article  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamiensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37

    Article  PubMed  Google Scholar 

  • Guo ZY, Kong CH, Wang JG, Wang YF (2011) Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biol Biochem 43(11):2257–2264

    Article  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Sustainable agriculture reviews. Springer, Dordrecht, pp 183–221

    Chapter  Google Scholar 

  • Haddad K, Jeguirim M, Jerbi B, Chouchene A, Dutournié P, Thevenin N et al (2017) Olive mill wastewater: from a pollutant to green fuels, agricultural water source and biofertilizer. ACS Sustain Chem Eng 5(10):8988–8996

    Article  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, Francois-Xavier E, Dieudonne N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2(7):171–178

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  PubMed  Google Scholar 

  • Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T (2018) Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual Saf 2(3):111–119

    Article  Google Scholar 

  • Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018a) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628:1582–1599

    Article  PubMed  Google Scholar 

  • Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, Zaman Akhtar MFU (2018b) Zinc solubilizing bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 203–227

    Chapter  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  PubMed  Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7

    Article  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawalekar JS (2013) Role of biofertilizers and biopesticides for sustainable agriculture. J Biol Innov 2(3):73–78

    Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Article  PubMed  Google Scholar 

  • Kristin A, Miranda H (2013) The root microbiota—a fingerprint in the soil? Plant Soil 370(1):671–686

    Article  Google Scholar 

  • Kumar A, Dewangan S, Lawate P, Bahadur I, Prajapati S (2019) Zinc-solubilizing bacteria: a boon for sustainable agriculture. In: Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 139–155

    Chapter  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  Google Scholar 

  • Lokko Y, Heijde M, Schebesta K, Scholtès P, Van Montagu M, Giacca M (2018) Biotechnology and the bioeconomy—towards inclusive and sustainable industrial development. New Biotechnol 40:5–10

    Article  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  Google Scholar 

  • Mahapatra DM, Murthy GS (2021) Long term evaluation of a pilot scale multimodal algal bioprocess for treatment of municipal wastewater. J Clean Prod 311:127690

    Article  Google Scholar 

  • Mahapatra DM, Chanakya HN, Joshi NV, Ramachandra TV, Murthy GS (2018) Algae-based biofertilizers: a biorefinery approach. In: Microorganisms for green revolution. Springer, Singapore, pp 177–196

    Chapter  Google Scholar 

  • Mahapatra DM, Satapathy KC, Panda B (2022) Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci Total Environ 803:149990

    Article  PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology 2(10):42–54

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  Google Scholar 

  • Marzouk NM, Abd-Alrahman HA, EL-Tanahy AMM, Mahmoud SH (2019) Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull Natl Res Centre 43(1):1–9

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347

    Article  PubMed  Google Scholar 

  • Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) (2017) Agriculturally important microbes for sustainable agriculture, vol 2. Applications in crop production and protection. Springer

    Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34

    Article  Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 11:41–61

    Google Scholar 

  • Morales-Cedeño LR, del Carmen Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: fundamentals, methods of application and future perspectives. Microbiol Res 242:126612

    Article  PubMed  Google Scholar 

  • Naz I, Ahmad H, Khokhar SN, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am Eurasian J Agric Environ Sci 16:449–454

    Google Scholar 

  • Nosheen S, Ajmal I, Song Y (2021) Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13(4):1868

    Article  Google Scholar 

  • Orozco-Mosqueda MDC, Flores A, Rojas-Sánchez B, Urtis-Flores CA, Morales-Cedeño LR, Valencia-Marin MF, Chávez-Avila S, Rojas-Solis D, Santoyo G (2021) Plant growth-promoting bacteria as bioinoculants: attributes and challenges for sustainable crop improvement. Agronomy 11(6):1167

    Article  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pandey K, Anas M, Hicks VK, Green MJ, Khodakovskaya MV (2019) Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Sci Rep 9:1–14

    Article  Google Scholar 

  • Parikh SJ, James BR (2012) Soil: the foundation of agriculture. Nat Educ Knowl 3(10):2

    Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49(2):222–228

    Article  PubMed  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54:286–290

    PubMed  Google Scholar 

  • Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D (2019) Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environ Sci Nano 6(6):1619–1656

    Article  Google Scholar 

  • Phurailatpam L, Mishra S (2020) Role of plant endophytes in conferring abiotic stress tolerance. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II. Springer, Singapore, pp 603–628

    Google Scholar 

  • Phurailatpam L, Goyal D, Mishra S (2021) Microbe-mediated amelioration of salinity stress in plants. Explor Biotechnol Res 1(1):80–96

    Article  Google Scholar 

  • Phurailatpam L, Dalal VK, Singh N, Mishra S (2022) Heavy metal stress alleviation through omics analysis of soil and plant microbiome. Front Sustain Food Syst 5:568

    Article  Google Scholar 

  • Pourbabaee AA, Koohbori Dinekaboodi S, Seyed Hosseini HM, Alikhani HA, Emami S (2020) Potential application of selected sulfur-oxidizing bacteria and different sources of sulfur in plant growth promotion under different moisture conditions. Commun Soil Sci Plant Anal 51(6):735–745

    Article  Google Scholar 

  • Prabhu N, Borkar S, Garg S (2019) Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. Adv Biol Sci Res:161–176

    Google Scholar 

  • Prajapati K, Modi HA (2012) The importance of potassium in plant growth—a review. Indian J Plant Sci 1(02–03):177–186

    Google Scholar 

  • Pramanik P, Goswami AJ, Ghosh S, Kalita C (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of north-east India. J Appl Microbiol 126(1):215–222

    Article  PubMed  Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60(3):349–366

    Article  Google Scholar 

  • Qiu Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv 37(6):107371

    Article  PubMed  Google Scholar 

  • Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghuwanshi R (2012) Opportunities and challenges to sustainable agriculture in India. Nebio 3(2):78–86

    Google Scholar 

  • Rajonee AA, Zaman S, Huq SMI (2017) Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nano fertilizer. Adv Nanopart 6(02):62

    Article  Google Scholar 

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9(1):e87217

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42(1):489–512

    Article  Google Scholar 

  • Ren N, Wang Y, Ye Y, Zhao Y, Huang Y, Fu W, Chu X (2020) Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria. Front Microbiol 11:1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Riaz U, Mehdi SM, Iqbal S, Khalid HI, Qadir AA, Anum W, Ahmad M, Murtaza G (2020) Bio-fertilizers: eco-friendly approach for plant and soil environment. In: Bioremediation and biotechnology. Springer, Cham, pp 189–213

    Chapter  Google Scholar 

  • Safinaz AF, Ragaa AH (2013) Effect of some red marine algae as biofertilizers on growth of maize (Zea mayz L.) plants. Int Food Res J 20(4):1629

    Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 179–198

    Chapter  Google Scholar 

  • Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK (2020) Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 202(4):677–693

    Article  PubMed  Google Scholar 

  • Schmidt J, Messmer M, Wilbois KP (2015) Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures. Plant Soil 397(1):411–445

    Article  Google Scholar 

  • Sekhar M, Riotte J, Ruiz L, Jouquet P, Braun JJ (2016) Influences of climate and agriculture on water and biogeochemical cycles: Kabini critical zone observatory. Proc Indian Natl Sci Acad 82(3):833–846

    Article  Google Scholar 

  • Shah A, Smith DL (2020) Flavonoids in agriculture: chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10(8):1209

    Article  Google Scholar 

  • Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26(1):465–490

    Article  Google Scholar 

  • Shree S, Kumari A (2019) Postharvest handling, diseases and disorders in bulb vegetables. In: The vegetable pathosystem. Apple Academic Press, pp 483–507

    Chapter  Google Scholar 

  • Silva YY, De Costa DM (2014) Potential of pre-harvest application of Burkholderia spinosa for biological control of epiphytic and pathogenic microorganisms on the phyllosphere of banana (Musa spp.). Trop Agri Res 25(4):443–454

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. In: ACIAR proceedings 109e, Canberra, pp 52–66

    Google Scholar 

  • Stocco AF, Diaz ME, Romera MR, Mercado LA, Rivero ML, Ponsone ML (2019) Biocontrol of postharvest Alternaria decay in table grapes from Mendoza province. Biol Control 134:114–122

    Article  Google Scholar 

  • Streminska M, Eveleens B, Blok C, Verkerke W, Boedijn A (2021) Recirculation, circular fertilizers and resilience: the potential of growing media systems for circular production. In: II International symposium on growing media, soilless cultivation, and compost utilization in horticulture 1317, pp 189–206

    Google Scholar 

  • Suthar H, Hingurao K, Vaghashiya J, Parmar J (2017) Fermentation: a process for biofertilizer production. In: Microorganisms for green revolution. Springer, Singapore, pp 229–252

    Chapter  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L.‘Badami’) seedlings. Turk J Agric For 34(4):349–359

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Bacteria in agrobiology: plant probiotics, pp 15–44

    Chapter  Google Scholar 

  • Umesha S, Singh PK, Singh RP (2018a) Microbial biotechnology and sustainable agriculture. In: Biotechnology for sustainable agriculture. Woodhead Publishing, pp 185–205

    Chapter  Google Scholar 

  • Umesha S, Manukumar HM, Chandrasekhar B (2018b) Sustainable agriculture and food security. In: Biotechnology for sustainable agriculture. Woodhead Publishing, pp 67–92

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58

    Article  PubMed  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition—a review. World J Agric Sci 5(3):270–278

    Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15(1):1–13

    Article  Google Scholar 

  • Wang HY, Shen LIU, Zhai LM, Zhang JZ, Ren TZ, Fan BQ, Liu HB (2015) Preparation and utilization of phosphate biofertilizers using agricultural waste. J Integr Agric 14(1):158–167

    Article  Google Scholar 

  • Williams LE, Pittman JK (2010) Cell biology of metals and nutrients. In: Plant cell monographs. Springer, Berlin, pp 95–117

    Google Scholar 

  • Wreford A, Bayne K, Edwards P, Renwick A (2019) Enabling a transformation to a bioeconomy in New Zealand. Environ Innov Soc Trans 31:184–199

    Article  Google Scholar 

  • Xiafang S, Weiyi H (2002) Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta Pedol Sin 39(6):863–871

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Res Biotechnol Microbiol 5(5):1–16

    Google Scholar 

  • Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). Int J Agric Res 22:130–135

    Article  Google Scholar 

  • Zarezadeh S, Riahi H, Shariatmadari Z, Sonboli A (2020) Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. J Appl Phycol 32(2):1231–1241

    Article  Google Scholar 

  • Zhang R, Mu Y, Li X, Li S, Sang P, Wang X, Wu H, Xu N (2020) Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci Total Environ 740:139810

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phurailatpam, L., Sahu, P.K., Samanta, L. (2023). Mode of Application of Biofertilisers in the Crop Field. In: Kaur, S., Dwibedi, V., Sahu, P.K., Kocher, G.S. (eds) Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry . Springer, Singapore. https://doi.org/10.1007/978-981-99-3561-1_3

Download citation

Publish with us

Policies and ethics