Skip to main content

Recycling and Lifecycle Assessment

  • Chapter
  • First Online:
Innovative Structural Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 336))

  • 200 Accesses

Abstract

Recycling and Life Cycle Assessment (LCA) are important issues for future materials development. Here, in the narrow sense, “recycling” means materials recycling, and is a recycling method in which waste is reused as the raw material for new products. Development of recycling technologies for aluminum alloys and CFRP products was carried out as part of the Project. In substitution of automotive materials for auto body weight reduction, it is necessary to consider the effects on society as a whole. In the Project, we created an LCA model with a system boundary extended spatially and temporally, which can evaluate the environmental, social and economic impacts in Japanese society as a whole up to the year 2050, together with the necessary database, and developed an evaluation tool that demonstrates the model and its database. Technology development related to recycling and LCA is described in detail in this Chap. 8, “Recycling and Life Cycle Assessment (LCA).”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Hall–Héroult process, the only refining method practically applied, is a representative of molten salt electrolysis, which obtains the target material by electrolyzing molten raw material. However, enormous energy is required to extract metallic aluminum from alumina.

  2. 2.

    While a metal with a relatively low standard electrode potential is called a “less-noble” metal, a metal with a relatively high standard electrode potential is called a “noble” metal.

  3. 3.

    Sizing agent is applied to the carbon fiber surface to prevent the fiber from damage and improve adhesion with the matrix resin.

  4. 4.

    Functional unit: When conducting the LCA, the functions of products and services for assessment should be identified in setting the objective and scope. The environmental burden as an assessment result is analyzed by the unit quantity of the identified function. This unit quantity of a function is called a functional unit, which should be expressed in a physical quantity and others.

References

  1. T. Ishikawa et al., J. Surf. Finish. Soc. Jpn. 49, 347 (1998)

    Article  CAS  Google Scholar 

  2. V. Schwarz et al., J. Appl. Electrochem. 25, 34 (1995)

    Article  CAS  Google Scholar 

  3. Y. Wang et al., J. Clean. Prod. 287, 125043 (2021)

    Article  CAS  Google Scholar 

  4. V. Kamavaram et al., Electrochim. Acta 50, 3286 (2005)

    Article  CAS  Google Scholar 

  5. D. Paradhan et al., Electrochim. Acta 54, 6661 (2009)

    Article  Google Scholar 

  6. Metallic materials series to use in the field, Aluminum, edited by Japan Aluminum Association, Maruzen Publishing (2011)

    Google Scholar 

  7. Y. Kojima, Development of new production processes for aluminum, Research and development for innovative structural materials, “FY 2021 accomplishment report meeting”, presentation overview (2022), p. 78

    Google Scholar 

  8. UACJ (Fukaya branch office), Development of new production processes for aluminum, Research and development for innovative structural materials, “FY 2020 accomplishment report meeting”, collection of posters (2021), p. 47

    Google Scholar 

  9. Y. Kojima, Development of new production processes for aluminum, Research and development for innovative structural materials, “FY 2021 accomplishment report meeting”, presentation overview (2022), p. 79

    Google Scholar 

  10. Y. Maeda, The Recent Trends of Carbon Fiber (CMC Publishing, 2013), pp. 1–6

    Google Scholar 

  11. I. Okajima, M. Hiramatsu, Y. Shimamura, T. Awaya, T. Sako, Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J. Supercrit. Fluids 91, 68–76 (2014)

    Article  CAS  Google Scholar 

  12. J. Jiang, G. Deng, X. Chen, X. Gao, Q. Guo, C. Xu, L. Zhou, On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition. Compos. Sci. Tech. 151, 243–251 (2017)

    Article  CAS  Google Scholar 

  13. K. Shibata, M. Nakagawa, CFRP recycling technology using depolymerization under ordinary pressure. Hitachi Chem. Tech. Rep. 56, 6–11 (2013)

    Google Scholar 

  14. M. Wada et al., Compos. A 85, 156–162 (2016)

    Article  CAS  Google Scholar 

  15. National Institute of Advanced Industrial Science and Technology (Nagoya Moriyama branch office): Development of evaluation technology for recycled carbon fiber, Research and development for innovative structural materials, “FY 2020 accomplishment report meeting” collection of posters (2021), p. 48

    Google Scholar 

  16. ISO 14040:2006, Environmental management—Life cycle assessment—Principles and framework

    Google Scholar 

  17. ISO 14044:2006, Environmental management—Life cycle assessment—Requirements and guidelines

    Google Scholar 

  18. H. Baumann, A.-M. Tillman, The Hitch Hiker’s Guide to LCA. An Orientation in Life Cycle Assessment Methodology and Application (Studentlitteratur, Lund, Sweden, 2004), p. 534

    Google Scholar 

  19. S.M. Kaufman, 3—Quantifying sustainability: industrial ecology, materials flow and life cycle analysis, in Metropolitan Sustainability: Understanding and Improving the Urban Environment (Woodhead Publishing Series in Energy, 2012), pp. 40–54. https://doi.org/10.1533/9780857096463.1.40

  20. I. Daigo, Y. Matsuno, K. N. Ishihara, Y. Adachi, Tetsu-to-Hagane 91, 159–166 (2005). (in Japanese). https://doi.org/10.2355/tetsutohagane1955.91.1_159

  21. M.J. Eckelman, I. Daigo, Ecol. Econ. 67, 265–273 (2008). https://doi.org/10.1016/J.ECOLECON.2008.05.020

    Article  Google Scholar 

  22. D.L. Schrijvers, P. Loubet, G. Sonneman, Int. J. Life Cycle Assess. 21, 976–993 (2016). https://doi.org/10.1007/s11367-016-1063-3

    Article  Google Scholar 

  23. B. Weidema, J. Ind. Ecol. 4, 11–33 (2000). https://doi.org/10.1162/108819800300106366

    Article  CAS  Google Scholar 

  24. M. Wang, A. Elgowainy, U. Lee, A. Bafana, S. Banerjee, P.T. Benavides, P. Bobba, A. Burnham, H. Cai, U.R. GracidaAlvarez, T.R. Hawkins, R.K. Iyer, J.C. Kelly, T. Kim, K. Kingsbury, H. Kwon, Y. Li, X. Liu, Z. Lu, L. Ou, N. Siddique, P. Sun, P. Vyawahare, O. Winjobi, M. Wu, H. Xu, E. Yoo, G.G. Zaimes, G. Zang, Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model® (2021.Net). Computer Software. USDOE Office of Energy Efficiency and Renewable Energy (EERE) (2021). Web. https://doi.org/10.11578/GREET-Net-2021/dc.20210903.1

  25. R. Geyer, User Guide for the University of California at Santa Barbara (UCSB) Automotive Energy & GHG Model 5. (2017). Accessed from https://www.worldautosteel.org/downloads/ucsb-model-5-user-guide/. Accessed 31 Aug 2021

  26. M. Kobayashi, A. Inaba, T. Nakayama, J. Jpn Inst. Energy 73(12), 1075 (1994)

    Article  Google Scholar 

  27. AIST (National Institute of Advanced Industrial Science and Technology): Inventory Database for Environmental Analysis (IDEA) version 3.1.0. (2021). Accessed from https://riss.aist.go.jp/lca-consortium/. Accessed 15 May 2022

  28. LCA Society of Japan: JLCA database. https://lcaforum.org/database/

  29. K. Nansai, Y. Moriguchi, S. Tohno: Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables, 3EID. https://www.cger.nies.go.jp/publications/report/d031/jpn/index_j.htm

  30. UNEP Life Cycle Initiative: Global LCA Data network, G. https://www.lifecycleinitiative.org/resources-2/global-lca-data-network-glad-2/

  31. Y. Kikuchi, J. Life Cycle Assess. Jpn. 18, 11–20 (2022). https://doi.org/10.3370/lca.18.11

    Article  Google Scholar 

  32. G. Finnveden, M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, S. Suh, J. Environ. Manag. 91, 1–21 (2009). https://doi.org/10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  33. T. Ekvall, Attributional and consequential life cycle assessment, in Sustainability Assessment at the 21st century [Internet], eds. by M.J. Bastante-Ceca, J.L. Fuentes-Bargues, L. Hufnagel, F. Mihai, C. Iatu (IntechOpen, London, UK, 2019). https://doi.org/10.5772/intechopen.89202. Accessed 25 Apr 2022

  34. M.A. Curran, M. Mann, G. Norris, J. Clean. Prod. 13, 853–862 (2005). https://doi.org/10.1016/j.jclepro.2002.03.001

    Article  Google Scholar 

  35. T. Schaubroeck, S. Schaubroeck, R. Heijungs, A. Zamagni, M. Brandão, E. Benetto, Sustainability 13, 7386 (2021). https://doi.org/10.3390/su13137386

    Article  CAS  Google Scholar 

  36. J. Liu, I. Daigo, D. Panasiuk, P. Dunuwila, K. Hamada, T. Hoshino, J. Clean. Prod. 349, 131317 (2022). https://doi.org/10.1016/j.jclepro.2022.131317

  37. ISO 20915:2018, Life cycle inventory calculation methodology for steel products

    Google Scholar 

  38. JISQ 20915:2019, Life cycle inventory calculation methodology for steel products (in Japanese)

    Google Scholar 

  39. C. Broadbent, Int. J. Life Cycle Assess. 21, 1658–1665 (2016). https://doi.org/10.1007/s11367-016-1081-1

    Article  Google Scholar 

  40. World Steel Association: Methodology report–Life cycle inventory study for steel products (Belgium, 2011), p. 48

    Google Scholar 

  41. The Japan Iron and Steel Federation: Life Cycle Thinking. https://www.jisf.or.jp/business/lca/lct/index.html (in Japanese). Accessed 15 May 2022

  42. European Commission: Results and deliverables of the Environmental Footprint pilot phase. https://ec.europa.eu/environment/eussd/smgp/PEFCR_OEFSR_en.htm. Accessed 15 May 2022

  43. CFP program: The list of certified CFP-PCR. https://www.cfp-japan.jp/calculate/authorize/pcr.php (in Japanese). Accessed 15 May 2022

  44. European Commission: Product Environmental Footprint Category Rules Guidance version 6.3 (2018). https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_guidance_v6.3.pdf. Accessed 15 May 2022

  45. T. Ekvall, Resour. Conserv. Recycl. 29, 91–109 (2000). https://doi.org/10.1016/S0921-3449(99)00057-9

    Article  Google Scholar 

  46. I. Daigo, K. Hamada, K. Takeyama, P. Dunuwila, D. Panasiuk, T. Hoshino, Conditions for selecting an allocation approach of the avoided burden by material recycling in life cycle inventory analysis. EcoBalance 2020, in 14th The International Conference on EcoBalance, On-line (2021)

    Google Scholar 

  47. I. Daigo, K. Iwata, I. Ohkata, Y. Goto, Environ. Sci. Technol. 49, 8691–8696 (2015). https://doi.org/10.1021/acs.est.5b01164

    Article  CAS  Google Scholar 

  48. H. Hatayama, I. Daigo, Y. Matsuno, Y. Adachi, Environ. Sci. Technol. 44, 6457–6463 (2010). https://doi.org/10.1021/es100044n

    Article  CAS  Google Scholar 

  49. I. Daigo, K. Tajima, H. Hayashi, D. Panasiuk, K. Takeyama, H. Ono, Y. Kobayashi, K. Nakajima, T. Hoshino, ISIJ Int. 61, 498–505 (2021). https://doi.org/10.2355/isijinternational.ISIJINT-2020-377

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Seko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seko, T., Yamashita, S., Shida, Ki., Daigo, I. (2023). Recycling and Lifecycle Assessment. In: Kishi, T. (eds) Innovative Structural Materials. Springer Series in Materials Science, vol 336. Springer, Singapore. https://doi.org/10.1007/978-981-99-3522-2_8

Download citation

Publish with us

Policies and ethics