Skip to main content

Zero-Valent Nanomaterials for Wastewater Treatment

  • Chapter
  • First Online:
Advanced Application of Nanotechnology to Industrial Wastewater

Abstract

Wastewater from various industries majorly includes organic pollutants and heavy metals. They pose a serious threat to the environment because they are toxic and not biodegradable. In this scenario, metallic nanoparticles such as gold, silver, platinum, iron, copper and selenium are explored for wastewater treatment. However, nanoscale zero-valent iron (nZVI), representing the forefront of technologies, has been considered as promising material, due to its high reducibility and strong adsorption capability. ZVI is typically applied as a reductant and is capable of transforming, degrading or sequestering a variety of contaminants. ZVIs can be applied as either a single or a bimetallic system as well as advanced oxidation processes (AOPs). Moreover, core–shell type nanoparticles are a type of biphasic materials which have an inner core structure and an outer shell made of different components. Organic shells, consisting in most cases of polymers, proteins or complex sugars, can improve the performance of inorganic nanoparticles by enhancing their biocompatibility, acting as anchor sites for molecular linkages, or protecting them from oxidation. In this chapter, we will be focusing on the role of zero-valent iron and hybrid metallic nanoparticles in wastewater treatment due to their ability for the removal of various pollutants with a special emphasis on adsorption and photocatalysis. Further, this chapter focuses on challenges addressing the treatment and future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad Z, Shah SA, Khattak I, Ullah H, Khan AA, Shah RA, Khan SA, Khan SB (2020) Melia Azedarach impregnated Co and Ni zero-valent metal nanoparticles for organic pollutants degradation: validation of experiments through statistical analysis. J Mater Sci: Mater Electron 31(19):16938–16950

    CAS  Google Scholar 

  • Ahmadi, M., Foladivanda, M., Jaafarzadeh, N., Ramezani, Z., Ramavandi, B., Jorfi, S., & Kakavandi, B. (2017). Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach. Journal of Water Supply: Research and Technology—Aqua, 66(2), 116–130.

    Google Scholar 

  • Ahmaruzzaman M (2021) Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Mater Res Bull 140:111262

    Article  CAS  Google Scholar 

  • Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM (2018) Chitosan-titanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep 8(1):1–18

    Article  Google Scholar 

  • Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM (2017) Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohyd Polym 173:676–689

    Article  CAS  Google Scholar 

  • Badmus KO, Wewers F, Al-Abri M, Shahbaaz M, Petrik LF (2021) Synthesis of Oxygen Deficient TiO2 for Improved Photocatalytic Efficiency in Solar Radiation. Catalysts 11(8):904

    Article  CAS  Google Scholar 

  • Baloochi SJ, Nazar ARS, Farhadian M (2018) 2, 4-Dichlorophenoxyacetic acid herbicide photocatalytic degradation by zero-valent iron/titanium dioxide based on activated carbon. Environ Nanotechnol Monit Manage 10:212–222

    Google Scholar 

  • Bhatti HN, Iram Z, Iqbal M, Nisar J, Khan MI (2020) Facile synthesis of zero valent iron and photocatalytic application for the degradation of dyes. Materials Research Express 7(1):015802

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43(18):7130–7135

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465

    Article  CAS  Google Scholar 

  • Cheng Y, Dong H, Hao T (2021) CaCO3 coated nanoscale zero-valent iron (nZVI) for the removal of chromium (VI) in aqueous solution. Sep Purif Technol 257:117967

    Google Scholar 

  • Dada AO, Adekola FA, Odebunmi EO (2017) Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chemistry 3(1):1351653

    Article  Google Scholar 

  • Deng M, Wang X, Li Y, Wang F, Jiang Z, Liu Y, Gu Z, Xia S, Zhao J (2020) Reduction and immobilization of Cr (VI) in aqueous solutions by blast furnace slag supported sulfidized nanoscale zerovalent iron. Sci Total Environ 743:140722

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2015) Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 271:195–203

    Article  CAS  Google Scholar 

  • Du Q, Zhang S, Pan B, Lv L, Zhang W, Zhang Q (2013) Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Res 47(16):6064–6074

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci Total Environ 621:1527–1532

    Google Scholar 

  • Eglal MM, Ramamurthy AS (2015) Removal of Pb (II), Cd (II), Cu (II) and trichloroethylene from water by Nanofer ZVI. Journal of Environmental Science and Health, Part A 50(9):901–912

    CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL (2020) Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Int J Environ Res Public Health 17(16):5817

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Álvarez MA, Alonso J, Lobo MC (2020) Effectiveness of nanoscale zero-valent iron for the immobilization of Cu and/or Ni in water and soil samples. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • He D, Ma X, Jones AM, Ho L, Waite TD (2016a) Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. Environ Sci Nano 3(4):737–744

    Article  CAS  Google Scholar 

  • He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang HM (2016b) Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation. J Photochem Photobiol, A 314:81–92

    Article  CAS  Google Scholar 

  • Hsieh WP, Pan JR, Huang C, Su YC, Juang YJ (2010) Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Sci Total Environ 408(3):672–679

    Article  CAS  Google Scholar 

  • Hua Z, Dai Z, Bai X, Pan W, Zhang X, Ma W, Huang X, Gu L (2014) Zero-valent nanophase iron and nitrogen co-modified titania nanotube arrays: Synthesis, characterization, and enhanced visible-light photocatalytic performance. Mater Sci Semicond Process 26:410–418

    Article  CAS  Google Scholar 

  • Jacob JM, Sinharoy A, Lens PN (2020) Photocatalytic degradation of Congo Red by zinc sulfide quantum dots produced by anaerobic granular sludge. Environ Technol. https://doi.org/10.1080/09593330.2020.1856940

    Article  Google Scholar 

  • Jia H, Wang C (2013) Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environ Technol 34(1):25–33

    Article  CAS  Google Scholar 

  • Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45(6):2191–2198

    Article  CAS  Google Scholar 

  • Khuntia BK, Anwar MF, Alam T, Samim M, Kumari M, Arora I (2019) Synthesis and Characterization of Zero-Valent Iron Nanoparticles, and the Study of Their Effect against the Degradation of DDT in Soil and Assessment of Their Toxicity against Collembola and Ostracods. ACS Omega 4(20):18502–18509

    Article  CAS  Google Scholar 

  • Kim SA, Kamala-Kannan S, Lee KJ, Park YJ, Shea PJ, Lee WH, Oh BT (2013) Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  CAS  Google Scholar 

  • Kishimoto N, Narazaki Y, Takemoto K (2018) Reusability of zero-valent iron particles for zinc ion separation. Sep Purif Technol 193:139–146

    Article  CAS  Google Scholar 

  • Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J Hazard Mater 219:75–81

    Article  Google Scholar 

  • Krishnan SK, Subbiah K, Kalivel P, Subramanian K (2021) Degradation of azo dye RED ME4BL treated with immobilised bimetallic zero-valent iron nanoparticles doped with palladium. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.2007381

    Article  Google Scholar 

  • Kumar R, Rashid J, Barakat MA (2015) Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation. Colloids and Interface Science Communications 5:1–4. https://doi.org/10.1016/j.colcom.2015.05.001

    Article  CAS  Google Scholar 

  • Lai B, Zhang Y, Chen Z, Yang P, Zhou Y, Wang J (2014) Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl Catal B 144:816–830

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  Google Scholar 

  • Li S, Wang W, Liang F, Zhang WX (2017) Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application. J Hazard Mater 322:163–171

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Li J, Zheng X (2011) Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent iron immobilized on organobentonite. Environ Pollut 159(12):3744–3749

    Article  CAS  Google Scholar 

  • Li Y, Zhao HP, Zhu L (2021) Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. Sci Total Environ 760:143413

    Article  CAS  Google Scholar 

  • Liu F, Shan C, Zhang X, Zhang Y, Zhang W, Pan B (2017a) Enhanced removal of EDTA-chelated Cu (II) by polymeric anion-exchanger supported nanoscale zero-valent iron. J Hazard Mater 321:290–298

    Article  CAS  Google Scholar 

  • Liu J, Mwamulima T, Wang Y, Fang Y, Song S, Peng C (2017b) Removal of Pb (II) and Cr (VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J Mol Liq 243:205–211

    Article  CAS  Google Scholar 

  • Liu M, Wang Y, Chen L, Zhang Y, Lin Z (2015) Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb (II) from aqueous solution. ACS Appl Mater Interfaces 7(15):7961–7969

    Article  CAS  Google Scholar 

  • Liu Y, Wang J (2019) Reduction of nitrate by zero valent iron (ZVI)-based materials: a review. Sci Total Environ 671:388–403

    Article  CAS  Google Scholar 

  • Madaffari MG, Bilardi S, Calabro PS, Moraci N (2017) Nickel removal by zero valent iron/lapillus mixtures in column systems. Soils Found 57(5):745–759

    Article  Google Scholar 

  • Mandal S, Pu S, Wang X, Ma H, Bai Y (2020) Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil. Sci Total Environ 708:134831

    Article  CAS  Google Scholar 

  • Mesa-Medina S, Villajos B, Gascó A, Hermosilla D (2021) Cutting-edge materials combining zero-valent iron applied to the photocatalytic treatment of organic contaminants of emerging concern in wastewater. Current Opinion in Green and Sustainable Chemistry 30:100484. https://doi.org/10.1016/j.cogsc.2021.100484

    Article  CAS  Google Scholar 

  • Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56(1–2):99–116

    Article  CAS  Google Scholar 

  • Mortazavian S, An H, Chun D, Moon J (2018) Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies. Chem Eng J 353:781–795

    Article  CAS  Google Scholar 

  • Murtaza B, Shah NS, Sayed M, Khan JA, Imran M, Shahid M, Niazi NK (2019) Synergistic effects of bismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution. Sci Total Environ 669:333–341

    Article  CAS  Google Scholar 

  • Nie X, Liu J, Zeng X, Yue D (2013) Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles. J Environ Sci 25(3):473–478

    Article  CAS  Google Scholar 

  • Niu H, Yang Y, Zhao W, Lv H, Zhang H, Cai Y (2021) Single-crystalline Fe7S8/Fe3O4 coated zero-valent iron synthesized with vacuum chemical vapor deposition technique: Enhanced reductive, oxidative and photocatalytic activity for water purification. J Hazard Mater 401:123442

    Article  CAS  Google Scholar 

  • Ombaka LM, Curti M, McGettrick JD, Davies ML, Bahnemann DW (2020) Nitrogen/Carbon-Coated Zero-Valent Copper as Highly Efficient Co-catalysts for TiO2 Applied in Photocatalytic and Photoelectrocatalytic Hydrogen Production. ACS Appl Mater Interfaces 12(27):30365–30380

    Article  CAS  Google Scholar 

  • Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zbořil R, Karakassides MA (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr (VI) removal from aqueous solution. J Hazard Mater 261:295–306

    Article  CAS  Google Scholar 

  • Radini IA, Hasan N, Malik MA, Khan Z (2018) Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J Photochem Photobiol B: Biol 183:154–163

    Google Scholar 

  • Raez JM, Arencibia A, Segura Y, Arsuaga JM, López-Muñoz MJ (2021) Combination of immobilized TiO2 and zero valent iron for efficient arsenic removal in aqueous solutions. Sep Purif Technol 258:118016

    Article  CAS  Google Scholar 

  • Rahman MU, Qazi UY, Hussain T, Nadeem N, Zahid M, Bhatti HN, Shahid I (2021) Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite. Opt Mater 120:111408

    Article  CAS  Google Scholar 

  • Ruan Y, Zhang H, Yu Z, Diao Z, Song G, Su M, Hou LA, Chen D, Wang S, Kong L (2022) Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron. J Hazard Mater 424:127119

    Article  CAS  Google Scholar 

  • Sheng G, Tang Y, Linghu W, Wang L, Li J, Li H, Wang X, Huang Y (2016) Enhanced immobilization of ReO4− by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: Implications for TcO4− sequestration. Appl Catal B 192:268–276

    Article  CAS  Google Scholar 

  • Shih YH, Tso CP, Tung LY (2010) Rapid degradation of methyl orange with nanoscale zerovalent iron particles. Nanotechnology 7(16):7

    Google Scholar 

  • Sinharoy A, Baskaran D, Pakshirajan K (2020a) Process integration and artificial neural network modeling of biological sulfate reduction using a carbon monoxide fed gas lift bioreactor. Chem Eng J 391:123518

    Article  CAS  Google Scholar 

  • Sinharoy A, Lens PN (2020) Biological removal of selenate and selenite from wastewater: options for selenium recovery as nanoparticles. Current Pollution Reports 6:230–249

    Article  CAS  Google Scholar 

  • Sinharoy A, Pakshirajan K (2019) Heavy metal sequestration by sulfate reduction using carbon monoxide as the sole carbon and energy source. Process Biochem 82:135–143

    Article  CAS  Google Scholar 

  • Sinharoy A, Pakshirajan K, Lens PN (2020b) Biological sulfate reduction using gaseous substrates to treat acid mine drainage. Current Pollution Reports 6:328–344

    Article  CAS  Google Scholar 

  • Statham TM, Mumford KA, Stark SC, Gore DB, Stevens GW (2015) Removal of copper and zinc from ground water by granular zero-valent iron: a mechanistic study. Sep Sci Technol 50(16):2427–2435

    CAS  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Coll Interface Sci 120(1–3):47–56

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf, A 308(1–3):60–66

    Article  CAS  Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192(1):131–138

    CAS  Google Scholar 

  • Tarekegn MM, Hiruy AM, Dekebo AH (2021) Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv 11(30):18539–18551

    Article  CAS  Google Scholar 

  • Vilardi G, Di Palma L, Verdone N (2019) A physical-based interpretation of mechanism and kinetics of Cr (VI) reduction in aqueous solution by zero-valent iron nanoparticles. Chemosphere 220:590–599

    Article  CAS  Google Scholar 

  • Vogel M, Georgi A, Kopinke FD, Mackenzie K (2019) Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time. Sci Total Environ 665:235–245

    Article  CAS  Google Scholar 

  • Wang X, Wang A, Lu M, Ma J (2018) Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J 337:372–384

    Article  CAS  Google Scholar 

  • Wang X, Xie Y, Ma J, Ning P (2019) Facile assembly of novel gC 3 N 4@ expanded graphite and surface loading of nano zero-valent iron for enhanced synergistic degradation of tetracycline. RSC Adv 9(59):34658–34670

    Article  CAS  Google Scholar 

  • Wang Y, Gong Y, Lin N, Yu L, Du B, Zhang X (2022) Enhanced removal of Cr (VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci 606:941–952

    Article  CAS  Google Scholar 

  • Wu, Y., Guan, C. Y., Griswold, N., Hou, L. Y., Fang, X., Hu, A., ... & Yu, C. P. (2020). Zero-valent iron-based technologies for removal of heavy metal (loid) s and organic pollutants from the aquatic environment: recent advances and perspectives. Journal of Cleaner Production, 123478.

    Google Scholar 

  • Wu Y, Yue Q, Ren Z, Gao B (2018) Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP). J Mol Liq 262:19–28

    Article  CAS  Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study. Mater Res Bull 45(10):1361–1367

    Article  CAS  Google Scholar 

  • Xu F, Deng S, Xu J, Zhang W, Wu M, Wang B, Yu G (2012) Highly active and stable Ni–Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ Sci Technol 46(8):4576–4582

    Article  CAS  Google Scholar 

  • Yun DM, Cho HH, Jang JW, Park JW (2013) Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange. Water Res 47(5):1858–1866

    Article  CAS  Google Scholar 

  • Zhang J, Zhang T, Liang X, Wang Y, Shi Y, Guan W, Liu D, Ma X, Pang J, Xie X, Hong K (2020) Efficient photocatalysis of CrVI and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride. Appl Clay Sci 198:105817

    Article  CAS  Google Scholar 

  • Zhou L, Li R, Zhang G, Wang D, Cai D, Wu Z (2018) Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem Eng J 339:85–96

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Biores Technol 152:538–542

    Article  CAS  Google Scholar 

  • Zhou Z, Dai C, Zhou X, Zhao J, Zhang Y (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water Air Soil Pollut 226(3):1–16

    Article  Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Sinharoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinharoy, A., Uddandarao, P. (2023). Zero-Valent Nanomaterials for Wastewater Treatment. In: Shah, M.P. (eds) Advanced Application of Nanotechnology to Industrial Wastewater. Springer, Singapore. https://doi.org/10.1007/978-981-99-3292-4_4

Download citation

Publish with us

Policies and ethics