Skip to main content

Nanomaterials in Wastewater Management

  • Chapter
  • First Online:
Advanced Application of Nanotechnology to Industrial Wastewater

Abstract

The challenge of providing safe and clean water to humans and the environment is a global issue. Water is the most indispensable element essential for the survival and development of life on Earth. Expeditious rises in populations, extensive agriculture practices, and expanding industrialization and urbanization have enormously contributed to wastewater generation, which has made water more polluted and unfit as well as deadly to drink. Innumerable individuals die annually as a result of ailments caused by drinking contaminated water. Efficacious purification of polluted water is thus the matter of greatest importance, and the development of a cheaper and efficient polluted water purification technology is the need of the hour. The most pertinent methodology that is exceptionally effective is the utilization of nanomaterials in wastewater management. Nanomaterials are one of the paramount aspects of the complex field of nanotechnology. Nanomaterials incorporate a high surface-to-volume proportion, simplicity of functionalization, a high affectability and reactivity, and a high adsorption limit, which makes them compatible for application in wastewater management. The utilization of metal nanoadsorbents such as iron oxide, titanium oxide, and manganese oxide, carbon nanotubes, and antimicrobial nanomaterials has received so much attention due to their unique properties. This chapter focuses on the development and utilization of different nanomaterials that would contribute towards wastewater management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Jule LT, Belay F, Shanmugam R, Dwarampudi LP, Nagaprasad N, Krishnaraj R (2021) Application of titanium dioxide nanoparticles synthesized by sol-gel methods in wastewater treatment. J Nanomater

    Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Ahmad HR, Aziz T, Zia-ur-Rehman M, Sabir M, Khalid H (2016) Sources and composition of waste water: threats to plants and soil health. In: Soil science: agricultural and environmental prospectives (pp 349–370). Springer, Cham

    Google Scholar 

  • Ali ME, Hoque ME, Safdar Hossain SK, Biswas MC (2020) Nanoadsorbents for wastewater treatment: next generation biotechnological solution. Int J Environ Sci Technol 17(9):4095–4132

    Article  CAS  Google Scholar 

  • Bewick S, Yang R, Zhang M (2009) Complex mathematical models of biology at the nanoscale. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):650–659

    Article  Google Scholar 

  • Chatterjee A, Deopura BL (2002) Carbon nanotubes and nanofibre: an overview. Fibers Polymers 3(4):134–139

    Article  CAS  Google Scholar 

  • Chen X, Li X, Xu D, Yang W, Bai S (2020) Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review. Nanotechnol Rev 9(1):736–750

    Article  CAS  Google Scholar 

  • Cheriyamundath S, Vavilala SL (2021) Nanotechnology-based wastewater treatment. Water Environ J 35(1):123–132

    Article  CAS  Google Scholar 

  • Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP (2010) Sorption of aqueous Zn [II] and Cd [II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26(2):967–981

    Article  CAS  Google Scholar 

  • Definition of Freshwater Resources. https://web.archive.org/web/20160411064155/http://webworld.unesco.org/water/ihp/publications/waterway/webpc/definition.html. Accessed 25 Jan 2021

  • Deshpande BD, Agrawal PS, Yenkie MKN, Dhoble SJ (2020) Prospective of nanotechnology in degradation of waste water: A new challenges. Nano-Struct Nano-Objects 22:100442

    Article  CAS  Google Scholar 

  • Dhanalekshmi KI, Meena KS (2016) DNA intercalation studies and antimicrobial activity of Ag@ ZrO2 core–shell nanoparticles in vitro. Mater Sci Eng C 59:1063–1068

    Article  CAS  Google Scholar 

  • Elmi F, Alinezhad H, Moulana Z, Salehian F, Mohseni Tavakkoli S, Asgharpour F, Fallah H, Elmi MM (2014) The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Sci Technol 70(5):763–770

    Google Scholar 

  • Fermeglia M, Pricl S (2009) Multiscale molecular modeling in nanostructured material design and process system engineering. Comput Chem Eng 33(10):1701–1710

    Article  CAS  Google Scholar 

  • Ferreira AM, Roque ÉB, Fonseca FVD, Borges CP (2015) High flux microfiltration membranes with silver nanoparticles for water disinfection. Desalin Water Treat 56(13):3590–3598

    Article  CAS  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372

    Article  Google Scholar 

  • Gomez-Solís C, Ballesteros JC, Torres-Martínez LM, Juárez-Ramírez I, Torres LD, Zarazua-Morin ME, Lee SW (2015) Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. J Photochem Photobiol A 298:49–54

    Article  Google Scholar 

  • Guesh K, Mayoral A, Marquez-Alvarez C, Chebude Y, Diaz I (2016) Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater 225:88–97

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212

    Article  CAS  Google Scholar 

  • Hoover MD, Cash LJ, Feitshans IL, Hendren CO, Harper SL (2018) A nanoinformatics approach to safety, health, well-being, and productivity. In: Nanotechnology environmental health and safety, 3rd edn (pp 83–117). William Andrew Publishing

    Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  Google Scholar 

  • de la Iglesia D, Harper S, Hoover MD, Klaessig F, Lippell P, Maddux B, Morse J, Nel A, Rajan K, Reznik-Zellen R, Tuominen MT (2011) Nanoinformatics 2020 roadmap

    Google Scholar 

  • Imamura K, Yoshikawa T, Hashimoto K, Kominami H (2013) Stoichiometric production of aminobenzenes and ketones by photocatalytic reduction of nitrobenzenes in secondary alcoholic suspension of titanium (IV) oxide under metal-free conditions. Appl Catal B 134:193–197

    Article  Google Scholar 

  • Jain K (2019) Nanohybrids of dendrimers and carbon nanotubes: a benefaction or forfeit in drug delivery? Nanosci Nanotechnol Asia 9(1):21–29

    Article  CAS  Google Scholar 

  • Jana S, Maiti S, Jana S (eds) (2017) Biopolymer-based composites: drug delivery and biomedical applications, pp 169–220

    Google Scholar 

  • Jassby D, Cath TY, Buisson H (2018) The role of nanotechnology in industrial water treatment. Nat Nanotechnol 13(8):670–672

    Article  CAS  Google Scholar 

  • Kamali M, Persson KM, Costa ME, Capela I (2019) Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environ Int 125:261–276

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44(6):1927–1933

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109

    Article  CAS  Google Scholar 

  • Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Health 5(4):215–226

    Article  CAS  Google Scholar 

  • Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14(2):1838–1858

    Article  CAS  Google Scholar 

  • Kurniawan TA, Sillanpää ME, Sillanpää M (2012) Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems. Crit Rev Environ Sci Technol 42(12):1233–1295

    Article  CAS  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  • Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr (VI) removal. J Mater Sci 49(12):4236–4245

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104

    Article  CAS  Google Scholar 

  • Lu C, Su F, Hu S (2008) Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl Surf Sci 254(21):7035–7041

    Article  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng

    Google Scholar 

  • Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  Google Scholar 

  • Min LL, Zhong LB, Zheng YM, Liu Q, Yuan ZH, Yang LM (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6(1):1–12

    Article  Google Scholar 

  • Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, Zarrabi M, Mohebi S, Vahed SA (2016) Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J Mol Liq 218:615–624

    Article  CAS  Google Scholar 

  • Munnawar I, Iqbal SS, Anwar MN, Batool M, Tariq S, Faitma N, Ahmad NM (2017) Synergistic effect of Chitosan-Zinc Oxide Hybrid Nanoparticles on antibiofouling and water disinfection of mixed matrix polyethersulfone nanocomposite membranes. Carbohyd Polym 175:661–670

    Article  CAS  Google Scholar 

  • Nassar MY, Abdelrahman EA, Aly AA, Mohamed TY (2017) A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J Mol Liq 248:302–313

    Article  CAS  Google Scholar 

  • Olvera RC, Silva SL, Robles-Belmont E, Lau EZ (2017) Review of nanotechnology value chain for water treatment applications in Mexico. Resource-Efficient Technol 3(1):1–11

    Article  Google Scholar 

  • Pandey PK, Sharma SK, Sambi SS (2015) Removal of lead (II) from waste water on zeolite-NaX. J Environ Chem Eng 3(4):2604–2610

    Article  CAS  Google Scholar 

  • Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  • Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1–2):154–158

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):1–10

    Article  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  CAS  Google Scholar 

  • Quang DV, Sarawade PB, Jeon SJ, Kim SH, Kim JK, Chai YG, Kim HT (2013) Effective water disinfection using silver nanoparticle containing silica beads. Appl Surf Sci 266:280–287

    Article  CAS  Google Scholar 

  • Rajasekhar B, Nambi IM, Govindarajan SK (2018) Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city. J Environ Manage 205:183–191

    Article  CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technol 2(4):175–184

    Article  Google Scholar 

  • Rajeswari S, Venckatesh R (2021) ZnO-based nanoparticles for wastewater treatment: a review. In: Zinc-based nanostructures for environmental and agricultural applications, pp 485–507

    Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  • Rawal SB, Bera S, Lee D, Jang DJ, Lee WI (2013) Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal Sci Technol 3(7):1822–1830

    Article  CAS  Google Scholar 

  • Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5(38):29885–29907

    Article  CAS  Google Scholar 

  • Sato A, Wang R, Ma H, Hsiao BS, Chu B (2011) Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J Electron Microsc 60(3):201–209

    Article  CAS  Google Scholar 

  • Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14(7):4745–4756

    Article  CAS  Google Scholar 

  • Singh R, Smitha MS, Karuppiah S, Singh SP (2018). Enhanced bioactivity of a GO–Fe3O4 nanocomposite against pathogenic bacterial strains. Int J Nanomed 13(T-NANO 2014 Abstracts), 63

    Google Scholar 

  • Singha I, Mishrab PK (2020) Nano-membrane filtration a novel application of nanotechnology for waste water treatment. Mater Today Proc 29:327–332

    Article  CAS  Google Scholar 

  • Sreedharan SM, Singh R (2019) Ciprofloxacin functionalized biogenic gold nanoflowers as nanoantibiotics against pathogenic bacterial strains. Int J Nanomed 14:9905

    Article  CAS  Google Scholar 

  • Sreedharan SM, Singh SP, Singh R (2019a) Flower shaped gold nanoparticles: biogenic synthesis strategies and characterization. Indian J Microbiol 59(3):321–327

    Article  CAS  Google Scholar 

  • Sreedharan SM, Gupta S, Saxena AK, Singh R (2019b) Macrophomina phaseolina: microbased biorefinery for gold nanoparticle production. Annals Microbiol 69(4):435–445

    Article  CAS  Google Scholar 

  • Tan L, Xu J, Xue X, Lou Z, Zhu J, Baig SA, Xu X (2014) Multifunctional nanocomposite Fe3O4@SiO2–mPD/SP for selective removal of Pb (ii) and Cr (vi) from aqueous solutions. RSC Adv 4(86):45920–45929

    Article  CAS  Google Scholar 

  • Templeton MR, Butler D (2011) Introduction to wastewater treatment. Bookboon

    Google Scholar 

  • Thierry B (2009) Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Curr Drug Deliv 6(4):391–403

    Article  CAS  Google Scholar 

  • Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A (2018) Progress of nanocomposite membranes for water treatment. Membranes 8(2):18

    Article  Google Scholar 

  • Wang Y, Fang Z, Kang Y, Tsang EP (2014) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater 275:230–237

    Article  CAS  Google Scholar 

  • Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron 41:1–11

    Article  CAS  Google Scholar 

  • Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42(8):1161–1171

    Article  CAS  Google Scholar 

  • Zinicovscaia I (2016) Conventional methods of wastewater treatment. In: Cyanobacteria for bioremediation of wastewaters (pp 17–25)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hina Bansal or M S Smitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagrath, L., Bansal, H., Smitha, M. (2023). Nanomaterials in Wastewater Management. In: Shah, M.P. (eds) Advanced Application of Nanotechnology to Industrial Wastewater. Springer, Singapore. https://doi.org/10.1007/978-981-99-3292-4_14

Download citation

Publish with us

Policies and ethics