Skip to main content

Gut Microbiome: Perspectives and Challenges in Human Health

  • Chapter
  • First Online:
Role of Microbes in Sustainable Development
  • 230 Accesses

Abstract

The phrase “gut microbiome” refers to the huge array of symbiotic bacteria in the gastrointestinal tract of humans as well as their genomes that interact collectively. The latest research suggests that the gut microbes mount multiple crucial biochemical roles for the host as well as those microbiome abnormalities are linked to a wide range of human disease processes. Trillions of microorganisms (altogether referred as the gut microbiota) live in the gastrointestinal system and perform critical roles which are related to host physiology and health. Pathogenesis research has found certain species, bacterial genes, as well as metabolites that have roles in different illnesses and medicinal targets. The gut microbiota has a functional part in macronutrient metabolism, immune system development, and the synthesis of pro or anti-inflammatory signalling molecules and peptides. It has been demonstrated that the gut microbiome has a role in the development of a number of systemic disease states, including obesity and cardiovascular disease, as well as intestinal disorders like inflammatory bowel disease. Active investigation on the roles of the microbes along with the processes underpinning host–microbe interactions will result in a higher understanding function of the microbiota in health moreover illness. Thus, knowing microbiome action is critical for the creation of future customised healthcare methods, and possibly giving novel potential pharmacological targets and research pathways in this rapidly increasing sector in terms of future personalised healthcare strategies. The present chapter focuses on composition, manipulation, and biological factors related to gut microbiota. It also discusses technical challenges related to the gut microbiome and host interactions. Furthermore, future perspectives and utilisations of the gut microbiome are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111

    Article  PubMed  Google Scholar 

  • Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, Al-Asmakh M, Abdel-Aziz H, Cenciarelli C (2016) Human microbiome and its association with health and diseases. J Cell Physiol 231(8):1688–1694

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56(6):406–414

    Article  CAS  PubMed  Google Scholar 

  • Barr JJ (2017) A bacteriophage journey through the human body. Immunol Rev 279(1):106–122

    Article  CAS  PubMed  Google Scholar 

  • Bartold PM, Van Dyke TE (2013) Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000 62(1):203–217

    Article  PubMed  Google Scholar 

  • Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:BBI-S34610

    Article  Google Scholar 

  • Bergström J, Lindholm B (2000) What are the causes and consequences of the chronic inflammatory state in chronic dialysis patients? In: Seminars in dialysis, vol 13. Blackwell Science Inc., Boston, pp 163–164

    Google Scholar 

  • Bharti R, Grimm DG (2021) Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform 22(1):178–193

    Article  CAS  PubMed  Google Scholar 

  • Bosch TC (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67(1):499–518

    Article  CAS  PubMed  Google Scholar 

  • Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, Galenkamp H, Levin E, Groen AK, Zwinderman AH, Nieuwdorp M (2022) Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 30(10):1464–1480

    Article  CAS  PubMed  Google Scholar 

  • Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B (2020) The role of innate immune response and microbiome in resilience of dairy cattle to disease: the mastitis model. Animals 10(8):1397

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruning J, Chapp A, Kaurala GA, Wang R, Techtmann S, Chen QH (2020) Gut microbiota and short chain fatty acids: influence on the autonomic nervous system. Neurosci Bull 36(1):91–95

    Article  CAS  PubMed  Google Scholar 

  • Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67(9):1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558

    Article  CAS  PubMed  Google Scholar 

  • Chen GY (2014) Role of Nlrp6 and Nlrp12 in the maintenance of intestinal homeostasis. Eur J Immunol 44(2):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK (2010) Host–bacterial symbiosis in health and disease. Adv Immunol 107:243–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    Article  CAS  PubMed  Google Scholar 

  • Cruz N, Abernathy GA, Dichosa AE, Kumar A (2022) The age of next-generation therapeutic-microbe discovery: exploiting microbe-microbe and host-microbe interactions for disease prevention. Infect Immun 90:e0058921

    Article  PubMed  Google Scholar 

  • Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877

    Article  CAS  PubMed  Google Scholar 

  • D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clinicachim Acta 451:97–102

    Article  Google Scholar 

  • Dakappagari N, Zhang H, Stephen L, Amaravadi L, Khan MU (2017) Recommendations for clinical biomarker specimen preservation and stability assessments. Bioanalysis 9(8):643–653

    Article  CAS  PubMed  Google Scholar 

  • Daliri EBM, Wei S, Oh DH, Lee BH (2017) The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr 57(16):3565–3576

    Article  CAS  PubMed  Google Scholar 

  • De Simone C (2019) The unregulated probiotic market. Clin Gastroenterol Hepatol 17(5):809–817

    Article  PubMed  Google Scholar 

  • Dicks LMT, Geldenhuys J, Mikkelsen LS, Brandsborg E, Marcotte H (2018) Our gut microbiota: a long walk to homeostasis. Benefic Microbes 9(1):3–20

    Article  CAS  Google Scholar 

  • Dillard LR, Payne DD, Papin JA (2021) Mechanistic models of microbial community metabolism. Mol Omics 17(3):365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinan TG, Cryan JF (2015) The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care 18(6):552–558

    Article  PubMed  Google Scholar 

  • Dorrestein PC, Mazmanian SK, Knight R (2014) Finding the missing links among metabolites, microbes, and the host. Immunity 40(6):824–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek-Wicher RK, Junka A, Bartoszewicz M (2018) The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol 13(2):85–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duran-Pinedo AE (2021) Metatranscriptomics analyses of the oral microbiome. Periodontol 2000 85(1):28–45

    Article  PubMed  Google Scholar 

  • Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS (2019) Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 27(2):105–117

    Article  CAS  PubMed  Google Scholar 

  • Elias-Oliveira J, Leite JA, Pereira ÍS, Guimarães JB, Manso GMDC, Silva JS, Tostes RC, Carlos D (2020) NLR and intestinal dysbiosis-associated inflammatory illness: drivers or dampers? Front Immunol 11:1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37(5):699–735

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2021) The contribution of microbiota, cerebral blood flow, and sleep deprivation in the pathogenesis of Alzheimer’s disease. In: Gut microbiota in neurologic and visceral diseases. Academic Press, New York, pp 143–158

    Chapter  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579–590

    Article  CAS  PubMed  Google Scholar 

  • Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11(5):4745–4767

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Foretz M, Guigas B, Viollet B (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15(10):569–589

    Article  CAS  PubMed  Google Scholar 

  • Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Francino MP (2016) Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 6:1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman ES, Bittinger K, Esipova TV, Hou L, Chau L, Jiang J, Mesaros C, Lund PJ, Liang X, FitzGerald GA, Goulian M (2018) Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci 115(16):4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J, Wu M (2021) Gut microbiota influence tumor development and alter interactions with the human immune system. J Exp Clin Cancer Res 40(1):1–9

    Google Scholar 

  • Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes 5(1):3–17

    Article  CAS  Google Scholar 

  • Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H (2022) Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr:1–21

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson GR, Hutkins RW, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K (2017) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502

    Article  PubMed  Google Scholar 

  • Gilbert JA, Lynch SV (2019) Community ecology as a framework for human microbiome research. Nat Med 25(6):884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94–103

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez CG (2020) Revealing host-gut microbiome interactions: a metaproteomic perspective. Stanford University, Stanford

    Google Scholar 

  • Gosalbes MJ, Abellan JJ, Durban A, Pérez-Cobas AE, Latorre A, Moya A (2012) Metagenomics of human microbiome: beyond 16S rDNA. Clin Microbiol Infect 18:47–49

    Article  CAS  PubMed  Google Scholar 

  • Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grond K, Sandercock BK, Jumpponen A, Zeglin LH (2018) The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol 49(11):e01788

    Article  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurung K, Wertheim B, Falcao Salles J (2019) The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl 167(3):156–170

    Article  Google Scholar 

  • Hale TW, Rowe HE (2016) Medications and mothers’ milk 2017. Springer Publishing Company, Berlin

    Google Scholar 

  • Hameed S, Xie L, Ying Y (2018) Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci Technol 81:61–73

    Article  CAS  Google Scholar 

  • Henry LP, Bruijning M, Forsberg SK, Ayroles JF (2021) The microbiome extends host evolutionary potential. Nat Commun 12(1):1–13

    Article  Google Scholar 

  • Hernandez CJ, Moeller AH (2021) The microbiome: a heritable contributor to bone morphology? In: Seminars in cell & developmental biology, vol 123. Academic Press, New York, p 82

    Google Scholar 

  • Hildebrand F, Gossmann TI, Frioux C, Özkurt E, Myers PN, Ferretti P, Kuhn M, Bahram M, Nielsen HB, Bork P (2021) Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host Microbe 29(7):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, Knight R, Knights D (2018) Evaluating the information content of shallow shotgun metagenomics. mSystems 3(6):e00069-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Houghteling PD, Walker WA (2015) Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr 60(3):294–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaac NI, Philippe D, Nicholas A, Raoult D, Eric C (2019) Metaproteomics of the human gut microbiota: challenges and contributions to other OMICS. Clin Mass Spectrom 14:18–30

    Article  Google Scholar 

  • Karaduta O, Dvanajscak Z, Zybailov B (2021) Metaproteomics—an advantageous option in studies of host-microbiota interaction. Microorganisms 9(5):980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasperska-Zajac A, Sztylc J, Machura E, Jop G (2011) Plasma IL-6 concentration correlates with clinical disease activity and serum C-reactive protein concentration in chronic urticaria patients. Clin Exp Allergy 41(10):1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Khor GL, Tan SS, Stoutjesdijk E, Ng KWT, Khouw I, Bragt M, Schaafsma A, Dijck-Brouwer DJ, Muskiet FA (2020) Temporal changes in breast milk fatty acids contents: a case study of Malay breastfeeding women. Nutrients 13(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasselin J, Alvarez-Salas E, Grigoleit JS (2016) Well-being and immune response: a multi-system perspective. Curr Opin Pharmacol 29:34–41

    Article  CAS  PubMed  Google Scholar 

  • Lawson MA, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, Chalklen L, Hall LJ (2020) Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J 14(2):635–648

    Article  CAS  PubMed  Google Scholar 

  • Le Bastard Q, Berthelot L, Soulillou JP, Montassier E (2021) Impact of non-antibiotic drugs on the human intestinal microbiome. Expert Rev Mol Diagn 21(9):911–924

    Article  PubMed  Google Scholar 

  • Le Roux F, Wegner KM, Polz MF (2016) Oysters and vibrios as a model for disease dynamics in wild animals. Trends Microbiol 24(7):568–580

    Article  PubMed  Google Scholar 

  • Lee PY, Chin SF, Neoh HM, Jamal R (2017) Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 24(1):1–8

    Article  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J (2013) A metagenomic insight into our gut’s microbiome. Gut 62(1):146–158

    Article  PubMed  Google Scholar 

  • Lindell AE, Zimmermann-Kogadeeva M, Patil KR (2022) Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 20:1–13

    Article  Google Scholar 

  • Lordan C, Thapa D, Ross RP, Cotter PD (2020) Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 11(1):1–20

    Article  PubMed  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  • Maghini DG, Moss EL, Vance SE, Bhatt AS (2021) Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nat Protoc 16(1):458–471

    Article  CAS  PubMed  Google Scholar 

  • Maglione A, Zuccalà M, Tosi M, Clerico M, Rolla S (2021) Host genetics and gut microbiome: perspectives for multiple sclerosis. Genes 12(8):1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555(7698):623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Marshall DD, Powers R (2017) Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MA, Sela DA (2013) Infant gut microbiota: developmental influences and health outcomes. In: Building babies. Springer, New York, pp 233–256

    Chapter  Google Scholar 

  • Martins FS, Silva AA, Vieira AT, Barbosa FH, Arantes RM, Teixeira MM, Nicoli JR (2009) Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch Microbiol 191(8):623–630

    Article  CAS  PubMed  Google Scholar 

  • Min S, Kim S, Cho SW (2020) Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp Mol Med 52(2):227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Invest 124(10):4212–4218

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan XC, Huttenhower C (2014) Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology 146(6):1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Morganti S, Tarantino P, Ferraro E, D’Amico P, Duso BA, Curigliano G (2019) Next generation sequencing (NGS): a revolutionary technology in pharmacogenomics and personalized medicine in cancer. In: Translational research and onco-omics applications in the era of cancer personal genomics. Springer, Berlin, pp 9–30

    Chapter  Google Scholar 

  • Moya A, Ferrer M (2016) Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 24(5):402–413

    Article  CAS  PubMed  Google Scholar 

  • Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M (2017) Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg 27(4):917–925

    Article  PubMed  Google Scholar 

  • Ouwehand AC, Derrien M, de Vos W, Tiihonen K, Rautonen N (2005) Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol 16(2):212–217

    Article  CAS  PubMed  Google Scholar 

  • Panek M, ČipčićPaljetak H, Barešić A, Perić M, Matijašić M, Lojkić I, Vranešić Bender D, Krznarić Ž, Verbanac D (2018) Methodology challenges in studying human gut microbiota—effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep 8(1):1–13

    Article  CAS  Google Scholar 

  • Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C (2022) Impact of antibiotics on the human microbiome and consequences for host health. Microbiol Open 11(1):e1260

    Article  CAS  Google Scholar 

  • Patel M, McAllister M, Nagaraju R, Al Badran SSF, Edwards J, McBain AJ, Barriuso J, Aziz O (2022) The intestinal microbiota in colorectal cancer metastasis–passive observer or key player? Crit Rev Oncol Hematol 180:103856

    Article  PubMed  Google Scholar 

  • Person H, Keefer L (2021) Psychological comorbidity in gastrointestinal diseases: update on the brain-gut-microbiome axis. Prog Neuro-Psychopharmacol Biol Psychiatry 107:110209

    Article  Google Scholar 

  • Pushpanathan P, Mathew GS, Selvarajan S, Seshadri KG, Srikanth P (2019) Gut microbiota and its mysteries. Indian J Med Microbiol 37(2):268–277

    Article  PubMed  Google Scholar 

  • Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844

    Article  CAS  PubMed  Google Scholar 

  • Roberts FA, Darveau RP (2015) Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000 69(1):18–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T (2021) Microorganisms as shapers of human civilization, from pandemics to even our genomes: villains or friends? A historical approach. Microorganisms 9(12):2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21(6):738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today 93(1):56–66

    Article  CAS  PubMed  Google Scholar 

  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Ruff WE, Greiling TM, Kriegel MA (2020) Host–microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 18(9):521–538

    Article  CAS  PubMed  Google Scholar 

  • Rutayisire E, Huang K, Liu Y, Tao F (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol 16(1):1–12

    Article  Google Scholar 

  • Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240

    Article  Google Scholar 

  • Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605–616

    Article  PubMed  Google Scholar 

  • Sbahi H, Di Palma JA (2016) Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterol 3(1):e000087

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiebenhoefer H, Van Den Bossche T, Fuchs S, Renard BY, Muth T, Martens L (2019) Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev Proteomics 16(5):375–390

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DJ, Langdon AE, Dantas G (2020) Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 12(1):1–12

    Article  Google Scholar 

  • Scotti E, Boué S, Sasso GL, Zanetti F, Belcastro V, Poussin C, Sierro N, Battey J, Gimalac A, Ivanov NV, Hoeng J (2017) Exploring the microbiome in health and disease: implications for toxicology. Toxicol Res Appl 1:2397847317741884

    Google Scholar 

  • Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL (2021) The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000 87(1):107–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859

    Article  CAS  PubMed  Google Scholar 

  • Selvamani S, Mehta D, Deb C, El Enshasy H, Abomoelak B (2021) Role of the gut microbiota in the digestive tract diseases. In: Probiotics, the natural microbiota in living organisms. CRC Press, Boca Raton, pp 30–57

    Chapter  Google Scholar 

  • Shi W, Syrenne R, Sun JZ, Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci 17(3):199–219

    Article  CAS  Google Scholar 

  • Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK (2022) Microbial journey: Mount Everest to Mars. Indian J Microbiol 62:1–15

    Article  Google Scholar 

  • Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LV, Abou-Samra E, Lavallée-Adam M (2018) Proteomic and metaproteomic approaches to understand host–microbe interactions. Anal Chem 90(1):86–109

    Article  CAS  PubMed  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumich A, Heym N, Lenzoni S, Hunter K (2022) Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr Opin Behav Sci 44:101101

    Article  Google Scholar 

  • Sutton TD, Hill C (2019) Gut bacteriophage: current understanding and challenges. Front Endocrinol 10:784

    Article  Google Scholar 

  • Szablewski L (2018) Human gut microbiota in health and Alzheimer’s disease. J Alzheimers Dis 62(2):549–560

    Article  PubMed  Google Scholar 

  • Tai N, Wong FS, Wen L (2015) The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord 16(1):55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiishi T, Fenero CIM, Câmara NOS (2017) Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5(4):e1373208

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Nakayama J (2017) Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int 66(4):515–522

    Article  CAS  PubMed  Google Scholar 

  • Taylor SL, Simpson JL, Rogers GB (2021) The influence of early-life microbial exposures on long-term respiratory health. Paediatr Respir Rev 40:15–23

    PubMed  Google Scholar 

  • Timmerman HM, Niers LE, Ridwan BU, Koning CJ, Mulder L, Akkermans LM, Rombouts FM, Rijkers GT (2007) Design of a multispecies probiotic mixture to prevent infectious complications in critically ill patients. Clin Nutr 26(4):450–459

    Article  PubMed  Google Scholar 

  • Tuchscherr L, Löffler B, Proctor RA (2020) Persistence of Staphylococcus aureus: multiple metabolic pathways impact the expression of virulence factors in small-colony variants (SCVs). Front Microbiol 11:1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Unemo M, Shafer WM (2011) Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann N Y Acad Sci 1230(1):E19–E28

    Article  PubMed  PubMed Central  Google Scholar 

  • Valli RX, Lyng M, Kirkpatrick CL (2020) There is no hiding if you Seq: recent breakthroughs in Pseudomonas aeruginosa research revealed by genomic and transcriptomic next-generation sequencing. J Med Microbiol 69(2):162–175

    Article  PubMed  Google Scholar 

  • Van Belkum M, Mendoza Alvarez L, Neu J (2020) Preterm neonatal immunology at the intestinal interface. Cell Mol Life Sci 77(7):1209–1227

    Article  PubMed  Google Scholar 

  • Wagner Mackenzie B, Waite DW, Taylor MW (2015) Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol 6:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 22(5):267–274

    Article  CAS  PubMed  Google Scholar 

  • Walworth NG, Saito MA, Lee MD, McIlvin MR, Moran DM, Kellogg RM, Fu FX, Hutchins DA, Webb EA (2021) Why environmental biomarkers work: transcriptome–proteome correlations and modeling of multistressor experiments in the marine Bacterium Trichodesmium. J Proteome Res 21(1):77–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xiong K, Zhao S, Zhang C, Zhang J, Xu L, Ma A (2020) Long-term effects of multi-drug-resistant tuberculosis treatment on gut microbiota and its health consequences. Front Microbiol 11:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warne RW, Kirschman L, Zeglin L (2019) Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J Anim Ecol 88(6):845–856

    Article  PubMed  Google Scholar 

  • Watkins C, Murphy K, Yen S, Carafa I, Dempsey EM, O’Shea CA, Vercoe EA, Ross RP, Stanton C, Ryan CA (2017) Effects of therapeutic hypothermia on the gut microbiota and metabolome of infants suffering hypoxic-ischemic encephalopathy at birth. Int J Biochem Cell Biol 93:110–118

    Article  CAS  PubMed  Google Scholar 

  • Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69(8):1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Duffy A (2017) Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 147(7):1468S–1475S

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withers E, Hill PW, Chadwick DR, Jones DL (2020) Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biol Biochem 143:107758

    Article  CAS  Google Scholar 

  • Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, Shmulevich I, Xie L, Caporaso JG (2020) The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 6(3):192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Yu Y (2011) Metagenome-based analysis: a promising direction for plankton ecological studies. Sci China Life Sci 54(1):75–81

    Article  PubMed  Google Scholar 

  • Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114(12):6130–6178

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, Du L, Cao Q, Tang J, Zhou C, Hou S (2018) A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome 6(1):1–13

    Article  CAS  Google Scholar 

  • Yoo HD, Kim D, Paek SH (2012) Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol Ther 20(4):371

    Article  CAS  Google Scholar 

  • Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J (2015) Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 7(1):1–19

    CAS  Google Scholar 

  • Zhang Z, Xu D, Fang J, Wang D, Zeng J, Liu X, Hong S, Xue Y, Zhang X, Zhao X (2021) In situ live imaging of gut microbiota. mSphere 6(5):e0054521

    Article  PubMed  Google Scholar 

  • Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30(6):492–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Du L, Shi R, Chen Z, Zhou Y, Li Z (2019) Early-life food nutrition, microbiota maturation and immune development shape life-long health. Crit Rev Food Sci Nutr 59(Suppl 1):S30–S38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salaria, N., Neeraj, Furhan, J., Kumar, R. (2023). Gut Microbiome: Perspectives and Challenges in Human Health. In: Sobti, R., Kuhad, R.C., Lal, R., Rishi, P. (eds) Role of Microbes in Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-3126-2_3

Download citation

Publish with us

Policies and ethics