Skip to main content

Particle Assays

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 145 Accesses

Abstract

Many unique advantages make SPRi valuable not only for the studies of biomolecules such as protein, DNA and RNA, carbohydrates and their conjugates, but for the investigations of particles that cover a very wide range of size, starting from macromolecules or nanoparticles up to micro- or even macro-particulates. Some typical examples are bacteria, cells, organelles, virus and various natural or artificial nanoparticles. They form even diverse research objects than molecules, being challenging analytical chemistry. It is in this case that SPRi has been explored, with promising progresses. In this chapter, very basic but unique assays will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hide M, Tsutsui T, Sato H, Nishimura T, Morimoto K, Yamamoto S, Yoshizato K (2002) Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal Biochem 302:28–37

    Article  CAS  PubMed  Google Scholar 

  2. Abadian PN, Kelley CP, Goluch ED (2014) Cellular analysis and detection using surface plasmon resonance techniques. Anal Chem 86:2799–2812

    Article  CAS  PubMed  Google Scholar 

  3. Milgram S, Bombera R, Livache T, Roupioz Y (2012) Antibody microarrays for label-free cell-based applications. Methods 56:326–333

    Article  CAS  PubMed  Google Scholar 

  4. Vala M, Etheridge S, Roach JA, Homola J (2009) Long-range surface plasmons for sensitive detection of bacterial analytes. Sens Actuators B Chem 139:59–63

    Google Scholar 

  5. Vala M, Robelek R, Bocková M, Wegener J, Homola J (2013) Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron 40:417–421

    Article  CAS  PubMed  Google Scholar 

  6. Kosaihira A, Ona T (2008) Rapid and quantitative method for evaluating the personal therapeutic potential of cancer drugs. Anal Bioanal Chem 391:1889–1897

    Article  CAS  PubMed  Google Scholar 

  7. Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG (2009) Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 24:1667–1673

    Article  CAS  PubMed  Google Scholar 

  8. Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25:55–60

    Article  CAS  PubMed  Google Scholar 

  9. Nishijima H, Kosaihira A, Shibata J, Ona T (2010) Development of signaling echo method for cell-based quantitative efficacy evaluation of anti-cancer drugs in apoptosis without drug presence using high-precision surface plasmon resonance sensing. Anal Sci 26:529–534

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Huang J, Lee J, Hwang S, Koh K (2010) Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens Actuators B 147:548–553

    Article  CAS  Google Scholar 

  11. Maltais JS, Denault JB, Gendron L, Grandbois M (2012) Label-free monitoring of apoptosis by surface plasmon resonance detection of morphological changes. Apoptosis 17:916–925

    Article  PubMed  Google Scholar 

  12. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided wave surface plasmon resonance sensors. Opt Lett 33:2539–2541

    Article  CAS  PubMed  Google Scholar 

  13. Krasnykov O, Karabchevsky A, Shalabney A, Auslender M, Abdulhalim I (2011) Sensor with increased sensitivity based on enhance doptical transmission in the infrared. Opt Commun 284:1435–1438

    Article  CAS  Google Scholar 

  14. Shalabney A, Abdulhalim I (2011) Sensitivity enhancement methods for surface plasmon sensors. Lasers Photon Rev 5:571–606

    Article  CAS  Google Scholar 

  15. Shalabney A, Abdulhalim I (2012) Figure of merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37:1175–1177

    Article  CAS  PubMed  Google Scholar 

  16. Ziblat R, Lirtsman V, Davidov D, Aroeti B (2006) Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. Biophys J 90:2592–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yashunsky V, Shimron S, Lirtsman V, Weiss AM, Melamed-Book N, Golosovsky M, Davidov D, Aroeti B (2009) Real-time monitoring of transferrin-induced endocytic vesicle formation by mid-infrared surface plasmon resonance. Biophys J 97:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci 101:14017–14022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550

    Article  CAS  Google Scholar 

  21. Ymeti A, Greve J, Lambeck PV, Wink T, van Hövell SWFM, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7:394–397. https://doi.org/10.1021/nl062595n

    Article  CAS  PubMed  Google Scholar 

  22. Ramachandran A, Wang S, Clarke J, Ja SJ, Goad D, Wald L, Flood EM, Knobbe E, Hryniewicz JV, Chu ST, Gill D, Chen W, King O, Little BE (2008) A universal biosensing platform based on optical micro-ring resonators. Biosens Bioelectron 23:939–944

    Article  CAS  PubMed  Google Scholar 

  23. Vollmer F, Arnold S, Keng D (2008) Single virus detection from the reactive shift of a whispering-gallery mode. Proc Natl Acad Sci 105:20701–20704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F (2018) Risks, release and voncentrations of engineered nanomaterial in the environment. Sci Rep 8:1565. https://doi.org/10.1038/s41598-018-19275-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wunderlich L, Hausler P, Märkl S, Bierl R, Hirsch T (2021) Nanoparticle determination in water by LED-excited surface plasmon resonance imaging. Chemosensors. 9:175–184. https://doi.org/10.3390/chemosensors9070175

    Article  CAS  Google Scholar 

  26. Jung LS, Campbell CT, Chinowsky TM, Mar M, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648

    Article  CAS  Google Scholar 

  27. Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface plasmon microscopy. Rev Sci Instrum 65:2829–2836

    Article  CAS  Google Scholar 

  28. Berger CEH, Kooyman RPH, Greve J (1999) Surface plasmon propagation near an index step. Opt Comm 167:183–189

    Article  CAS  Google Scholar 

  29. Rothenhäusler B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  30. Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M, Müller H, Marwedel P (2010) Signal analysis and classification for plasmon assisted microscopy of nanoobjects. Sens Actuators B 151:281–290

    Article  CAS  Google Scholar 

  31. Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2010) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35. https://doi.org/10.1007/s11468-009-9111-5

    Article  CAS  Google Scholar 

  32. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    Article  CAS  PubMed  Google Scholar 

  33. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Munir A, Zhu Z, Zhou HS (2010) Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal Chem 82:6782–6789

    Article  CAS  PubMed  Google Scholar 

  35. Piliarik M, Homola J (2008) Self-referencing SPR imaging for most demanding high throughput screening applications. Sens Actuators B 134:353–355

    Article  CAS  Google Scholar 

  36. Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sens Actuators 160:1210–1215

    Article  CAS  Google Scholar 

  37. Victoria S (2012) Application of surface plasmon resonance (SPR) for the detection of single viruses and single biological nano-objects. J Bacteriol Parasitol 3:7. https://doi.org/10.4172/2155-9597.1000e110

    Article  CAS  Google Scholar 

  38. Valle PJ, Ortiz EM, Saiz JM (1997) Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation. Opt Commun 137:334–342

    Article  CAS  Google Scholar 

  39. Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW (1996) Local excitation, scattering, and interference of surface plasmons. Phys Rev Lett 77:1889–1892

    Article  CAS  PubMed  Google Scholar 

  40. Konopsky VN, Kouyanov KE, Novikova NN (2001) Investigations of the interference of surface plasmons on rough silver surface by scanning plasmon near-field microscope. Ultramicroscopy 88:127–138

    Article  CAS  PubMed  Google Scholar 

  41. Kretschmann E (1971) Die bestimmung optischer konstanten von metallen durch anregung von oberfliichenplasmaschwingungen. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  42. Sjölander S, Urbaniczky C (1991) Integrated fluid handling system for biomolecular interaction analysis. Anal Chem 63:2338–2345

    Article  PubMed  Google Scholar 

  43. Ruenraroengsak P, Florence AT (2005) The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels. Int J Pharm 298:361–366

    Article  CAS  PubMed  Google Scholar 

  44. Zybin A, Boecker D, Mirsky VM, Niemax K (2007) Enhancement of the detection power of surface plasmon resonance measurements by optimization of the reflection angle. Anal Chem 79:4233–4236

    Article  CAS  PubMed  Google Scholar 

  45. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  PubMed  Google Scholar 

  46. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25:3703–3707

    CAS  PubMed  Google Scholar 

  47. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  CAS  PubMed  Google Scholar 

  48. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  PubMed  Google Scholar 

  49. Kourembanas S (2014) Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77:13–27

    Article  PubMed  Google Scholar 

  50. Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D (2014) Extracellular vesicles in multiple sclerosis: what are they telling us? Front Cell Neurosci 8:1–9. Article 100. https://doi.org/10.3389/fncel.2014.00100

  51. Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, da Silva AC, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NHH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E-M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-‘t Hoen ENM, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pállinger É, del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, SánchezMadrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MHM, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066–27126

    Google Scholar 

  52. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  CAS  PubMed  Google Scholar 

  53. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  CAS  PubMed  Google Scholar 

  54. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H, Wang W, Gong H, Lausted C, Hood L, Yang G, Hu Z (2014) Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem 86:8857–8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KEM, Sadik M, Alaarg A, Smith CIE, Lehtiö J, El Andaloussi S, Wood MJ, Vader P (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519. https://doi.org/10.1038/srep22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gualerzi A, Niada S, Giannasi C, Picciolini S, Morasso C, Vanna R, Rossella V, Masserini M, Bedoni M, Ciceri F, Bernardo ME, Brini AT, Gramatica F (2017) Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep 7:9820. https://doi.org/10.1038/s41598-017-10448-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boriachek K, Islam M N, Möller A, Salomon C, Nguyen N-T, Hossain MSA, Yamauchi Y, Shiddiky MJA (2018) Small 14:1702153. https://doi.org/10.1002/smll.201702153

  60. Aryani A, Denecke B (2016) Exosomes as a nanodelivery system: a key to the future of neuromedicine? Mol Neurobiol 53:818–834

    Article  CAS  PubMed  Google Scholar 

  61. Jarmalavičiu̅tė A, Pivoriu̅nas A (2016) Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 113:816−822

    Google Scholar 

  62. García-Romero N, Carrión-Navarro J, Esteban-Rubio S, Lázaro-Ibáñez E, Peris-Celda M, Alonso MM, Guzmán-De-Villoria J, Fernández-Carballal C, de Mendivil AO, García-Duque S, Escobedo-Lucea C, Prat-Acín R, Belda-Iniesta C, Ayuso-Sacido A (2017) DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 8:1416–1428

    Article  PubMed  Google Scholar 

  63. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  64. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  65. Yang C, Robbins PD (2011) The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011:842–849. https://doi.org/10.1155/2011/842849

    Article  CAS  Google Scholar 

  66. Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O’Byrne KJ (2014) Functions and therapeutic roles of exosomes in cancer. Front Oncol 4:127. https://doi.org/10.3389/fonc.2014.00127

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lim Y-J, Lee S-J (2017) Are exosomes the vehicle for protein aggregate propagation in neurodegenerative diseases? Acta Neuropathol Commun 5:64. https://doi.org/10.1186/s40478-017-0467-z

  68. Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483:1178–1186

    Article  CAS  PubMed  Google Scholar 

  69. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B (2017) When cooperation was efficient or inefficient. Functional near-infrared spectroscopy evidence. Front Neurosci 11:26. https://doi.org/10.3389/fnsys.2017.00026

    Article  PubMed  PubMed Central  Google Scholar 

  70. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688. https://doi.org/10.1007/s00018-011-0689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cobelli NJ, Leong DJ, Sun HB (2017) Exosomes: biology, therapeutic potential, and emergingrole in musculoskeletal repair and regeneration. Ann N Y Acad Sci 1410:57–67

    Article  PubMed  Google Scholar 

  72. Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS (2018) MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 156:16–27. https://doi.org/10.1016/j.biomaterials.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  73. Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for therapies? Canc Treat Rev 38:580–588

    Article  Google Scholar 

  74. Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Möller A (2017) Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Canc 141:614–620

    Article  CAS  Google Scholar 

  75. Van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  PubMed  Google Scholar 

  76. Wang N, Song X, Liu L, Niu L, Wang X, Song X, Xie L (2018) Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Canc Sci 109:1701–1709. https://doi.org/10.1111/cas.13581

    Article  CAS  Google Scholar 

  77. Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S (2015) Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 290:2969–2982

    Article  CAS  PubMed  Google Scholar 

  78. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103:11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl E (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. J Alzheimer’s Dement 11:600−607.e1. https://doi.org/10.1016/j.jalz.2014.06.008

    Article  Google Scholar 

  80. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360. https://doi.org/10.3402/jev.v2i0.20360

    Article  CAS  Google Scholar 

  81. Ferhan AR, Jackman JA, Park JH, Cho NJ, Kim DH (2018) Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev 125:48–77

    Article  CAS  PubMed  Google Scholar 

  82. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118:1917–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwizera EA, O’Connor R, Vinduska V, Williams M, Butch ER, Snyder SE, Chen X, Huang X (2018) Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8:2722–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li T-D, Zhang R, Chen H, Huang Z-P, Ye X, Wang H, Deng A-M, Kong J-L (2018) An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem Sci 9:5372–5382

    Google Scholar 

  85. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed 56:11916–11920

    Article  CAS  Google Scholar 

  86. Yu X, He L, Pentok M, Yang H, Yang Y, Li Z, He N, Deng Y, Li S, Liu T (2019) An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 11:15589–15595. https://doi.org/10.1039/C9NR04050A

  87. Tang Y-T, Huang Y-Y, Zheng L, Qin S-H, Xu X-P, An T-X, Xu Y, Wu Y-S, Hu X-M, Ping B-H, Wang Q (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40:834−844

    Google Scholar 

  88. Sina AAI, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJA, Trau M (2016) Real time and label free profiling of clinically relevant exosomes. Sci Rep 6:30460. https://doi.org/10.1038/srep30460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, Lion N, Vogel H (2015) Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 407:5425–5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Di Noto G, Bugatti A, Zendrini A, Mazzoldi EL, Montanelli A, Caimi L, Rusnati M, Ricotta D, Bergese P (2016) Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosens Bioelectron 77:518–524

    Article  PubMed  Google Scholar 

  92. Van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R (2013) Innovation in detection of micro particles and exosomes. J Thromb Haemostasis 11:36–45. https://doi.org/10.1111/jth.12254

    Article  Google Scholar 

  93. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  94. Fan Y, Duan X, Zhao M, Wei X, Wu J, Chen W, Liu P, Cheng W, Cheng Q, Ding S (2020) High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosens Bioelectron 154:112066. https://doi.org/10.1016/j.bios.2020.112066

    Article  CAS  PubMed  Google Scholar 

  95. Théry C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    Article  PubMed  Google Scholar 

  96. Ji H, Erfani N, Tauro BJ, Kapp EA, Zhu HJ, Moritz RL, Lim JW, Simpson RJ (2008) Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes. Electrophoresis 29:2660–2671

    Article  CAS  PubMed  Google Scholar 

  97. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304

    Article  CAS  PubMed  Google Scholar 

  98. Rood IM, Deegens JK, Merchant ML, Tamboer WP, Wilkey DW, Wetzels JF, Klein JB (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78:810–816

    Article  CAS  PubMed  Google Scholar 

  99. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174

    Article  CAS  PubMed  Google Scholar 

  100. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  101. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30

    Article  CAS  PubMed  Google Scholar 

  102. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S, Pálinkás Z, Kumar V, Nagy P, Buzás EI, Ferdinandy P, Giricz Z, Kittel Á (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS ONE 10(12):e0145686. https://doi.org/10.1371/journal.pone.0145686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Welton JL, Webber JP, Botos L-A, Jones M, Clayton A (2015) Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles 4:27269. https://doi.org/10.3402/jev.v4.27269

  104. Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P (2017) Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine 13:2061−2065

    Google Scholar 

  105. Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa M, Beyer K, Borràs FE (2016) Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep 6:33641. https://doi.org/10.1038/srep33641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, Naruse K, Sadamura Y, Hanayama R (2016) A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep 6:33935. https://doi.org/10.1038/srep33935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Maiolo D, Paolini L, Di Noto G, Zendrini A, Berti D, Bergese P, Ricotta D (2015) Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem 87:4168–4176

    Article  CAS  PubMed  Google Scholar 

  108. Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, Masserini M, Morasso C (2018) Detection and characterization of different brain-derived subpopulations of plasma exosomes by surface plasmon resonance imaging. Anal Chem 90:8873–8880

    Article  CAS  PubMed  Google Scholar 

  109. Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, Goetzl EJ, Kapogiannis D (2017) Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci 11:278. https://doi.org/10.3389/fnins.2017.00278

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bally M, Gunnarsson A, Svensson L, Larson G, Zhdanov VP, Höök F (2011) Phys Rev Lett 107:188103-1–5. https://doi.org/10.1103/PhysRevLett.107.188103

  111. Rich RL, Myszka DG (2003) Spying on HIV with SPR. Trends Microbiol 11:124–133

    Article  CAS  PubMed  Google Scholar 

  112. Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Analyt Chim Acta. 681:8–15. https://doi.org/10.1038/ki.2010.278

    Article  CAS  Google Scholar 

  113. Rothenhäusler B, Knoll W (1987) Plasmon surface polariton fields versus TIR evanescent waves for scattering experiments at surfaces. Opt Commun 63:301–304

    Article  Google Scholar 

  114. Rothenhäusler B, Knoll W (1987) Total internal diffraction of plasmon surface polaritons. Appl Phys Lett 51:783–785

    Article  Google Scholar 

  115. Uhnoo I, Svensson L, Wadell G (1990) Enteric adenoviruses. Baillière’s. Clin Gastroenterol 4:627–642

    CAS  Google Scholar 

  116. Desselberger U, Gray J (2003) Perspectives in medical virology, vol 9. Elsevier, Amsterdam

    Google Scholar 

  117. Kundu A, McBride G, Wuertz S (2013) Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment. Water Res 47:6309–6325

    Article  CAS  PubMed  Google Scholar 

  118. Pond K (2005) Water recreation and disease. In: Plausibility of associated infections: acute effects, sequelae and mortality, 1st edn. World Health Organization, IWA Publishing, London

    Google Scholar 

  119. Li D, He M, Jiang SC (2010) Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. Appl Environ Microbiol 76:1442–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Percivalle E, Sarasini A, Torsellini M, Bruschi L, Antoniazzi E, Grazia Revello M, Gerna G (2003) A comparison of methods for detecting adenovirus type 8 keratoconjunctivitis during a nosocomial outbreak in a Neonatal Intensive Care Unit. J Clin Virol 28:257–264

    Article  CAS  PubMed  Google Scholar 

  121. Puig M, Jofre J, Lucena F, Allard A, Wadell G, Girones R (1994) Detection of adenoviruses and enteroviruses in polluted waters by nested PCR amplification. Appl Environ Microbiol 60:2963–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Amano Y, Cheng Q (2005) Detection of influenza virus: traditional approaches and development of biosensors. Anal Bioanal Chem 381:156–164

    Article  CAS  PubMed  Google Scholar 

  123. Jiang S, Noble R, Chu W (2001) Human adenoviruses and coliphages in urban runoff-impacted coastal waters of southern California. Appl Environ Microbiol 67:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Prescott AB, Barkely TU (2008) Trends in water resources research. Nova Science Publishers, New York

    Google Scholar 

  125. Wong K, Onan BM, Xagoraraki I (2010) Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods. Appl Environ Microbiol 76:6441–6448. https://doi.org/10.1128/AEM.02685-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/jak/stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yildirim N, Li D, Long F, Gu AZ (2013) IEEE sensors conference. IEEE, Baltimore, pp 1–5

    Google Scholar 

  128. Novotny L, Hecht B, Pohl DW (1997) Interference of locally excited surface plasmons. J Appl Phys 81:1798–1804

    Article  CAS  Google Scholar 

  129. Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966

    Article  CAS  Google Scholar 

  130. Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shearstress in endothelial cells. Proc Natl Acad Sci USA 103:15463−15468

    Google Scholar 

  131. Chen K, Obinata H, Izumi T (2010) Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance. Biosens Bioelectron 25:1675–1680

    Article  CAS  PubMed  Google Scholar 

  132. Li BB, Clements WR, Yu XC, Shi K, Gong Q, Xiao YF (2014) Single nanoparticle detection using split-mode microcavity Raman lasers. Proc Natl Acad Sci 111:14657–14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2013) Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol Int 62:163–169

    Article  CAS  PubMed  Google Scholar 

  134. Toma K, Kano H, Offenhäusser A (2014) Label-free measurement of cell–electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8:12612–12619

    Article  CAS  PubMed  Google Scholar 

  135. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2009) Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol 10:16. https://doi.org/10.1186/1471-2121-10-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang W, Wang S, Liu Q, Wu J, Tao N (2012) Mapping single-cell–substrate interactions by surface plasmon resonance microscopy. Characterization of micropatterned lipid membranes on a gold surface by surface plasmon resonance imaging and electrochemical signaling of a pore-forming protein. Langmuir 28:13373–13379

    Google Scholar 

  137. Wang W, Yang Y, Wang S, Nagaraj VJ, Liu Q, Wu J, Tao N (2012) Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat Chem 4:846–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Giebel K-F, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, Bastmeyer M (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76:509–516

    Google Scholar 

  139. Soon CF, Khaghani SA, Youseffi M, Nayan N, Saim H, Britland S, Denyer MCT (2013) Interfacial study of cell adhesion to liquid crystals using widefield surface plasmon resonance microscopy. Colloids Surf B 110:156–162

    Article  CAS  Google Scholar 

  140. Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S, Tao N (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shinohara H, Sakai Y, Mir TA (2013) Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal Biochem 441:185–189

    Article  CAS  PubMed  Google Scholar 

  143. Yanase Y, Araki A, Suzuki H, Tsutsui T, Kimura T, Okamoto K, Nakatani T, Hiragun T, Hide M (2010) Development of an optical fiber SPR sensor for living cell activation. Biosens Bioelectron 25:1244–1247

    Article  CAS  PubMed  Google Scholar 

  144. Yanase Y, Hiragun T, Kaneko S, Gould HJ, Greaves MW, Hide M (2010) Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens Bioelectron 26:674–681

    Article  CAS  PubMed  Google Scholar 

  145. Bombera R, Leroy L, Livache T, Roupioz Y (2012) DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosens Bioelectron 33:10–16

    Article  CAS  PubMed  Google Scholar 

  146. Stojanović I, van der Velden TJG, Mulder HW, Schasfoort RBM, Terstappen LWMM (2015) Quantification of antibody production by surface plasmon resonance imaging. Anal Biochem 485:112–118

    Article  PubMed  Google Scholar 

  147. Stojanović I, van Hal Y, van der Velden TJG, Schasfoort RBM, Terstappen LWMM (2016) Detection of apoptosis in cancer cell lines using surface plasmon resonance imaging. Sens Biosens Res. 7:48–54

    Google Scholar 

  148. Cortès S, Villiers CL, Colpo P, Couderc R, Brakha C, Rossi F, Marche PN, Villiers MB (2011) Biosensor for direct cell detection, quantification and analysis. Biosens Bioelectron 26:4162–4168

    Article  PubMed  Google Scholar 

  149. Horii M, Shinohara H, Iribe Y, Suzuki M (2011) Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager. Analyst 136:2706–2711

    Article  CAS  PubMed  Google Scholar 

  150. Wilkop T, Manivannan N, Balachandran W, Ray AK (2020) Surface plasmon resonance for human bone marrow cells imaging. IEEE Sensors J 20:11625–11631

    Article  CAS  Google Scholar 

  151. Braun D, Fromherz P (1998) Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys Rev Lett 81:5241–5244

    Article  CAS  Google Scholar 

  152. Holt MR, Calle Y, Sutton DH, Critchley DR, Jones GE, Dunn GA (2008) Quantifying cell–matrix adhesion dynamics in living cells using interference reflection microscopy. J Microsc 232:73–81

    Article  CAS  PubMed  Google Scholar 

  153. Matsuzaki T, Ito K, Masuda K, Kakinuma E, Sakamoto R, Iketaki K, Yamamoto H, Suganuma M, Kobayashi N, Nakabayashi S, Tanii T, Yoshikawa HY (2016) Quantitative evaluation of cancer cell adhesion to self-assembled monolayer-patterned substrates by reflection interference contrast microscopy. J Phys Chem B 120:1221–1227

    Article  CAS  PubMed  Google Scholar 

  154. Dos Santos MC, Déturche R, Vézy C, Jaffiol R (2014) Axial nanoscale localization by normalized total internal reflection fluorescence microscopy. Opt Lett 39:869–872

    Article  PubMed  Google Scholar 

  155. Son T, Seo J, Choi I-H, Kim D (2018) Label-free quantification of cell-to-substrate separation by surface plasmon resonance microscopy. Opt Commun 422:64–68

    Article  CAS  Google Scholar 

  156. Nelder JA (1966) Inverse polynomials a useful group of multi-factor response functions. Biometrics 22:128–141

    Article  Google Scholar 

  157. Izzard CS, Lochner LR (1976) Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci 21:129–159

    Article  CAS  PubMed  Google Scholar 

  158. Truskey GA, Burmeister JS, Grapa E, Reichert WM (1992) Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances. J Cell Sci 1992 103:491–499

    Google Scholar 

  159. Davies PF, Robotewskyj A, Griem ML (1993) Endothelial cell adhesion in real time: measurements in vitro by tandem scanning confocal image. J Clin Invest 91:2640–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Davies PF, Robotewskyj A, Griem ML (1994) Quantitative studies of endothelial cell adhesion: directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest 93:2031–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2012) Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging. Biosens Bioelectron 32:62–68

    Article  CAS  PubMed  Google Scholar 

  162. Schasfoort RBM, Bentlage AEH, Stojanovic I, van der Kooi A, van der Schoot E, Terstappen LWMM, Vidarsson G (2013) Label-free cell profiling. Anal Biochem 439:4–6. https://doi.org/10.1016/j.ab.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  163. Stojanović I, Schasfoort RBM, Terstappen LWMM (2014) Analysis of cell surface antigens by surface plasmon resonance imaging. Biosensors Bioelectronics. 52:36–43

    Article  PubMed  Google Scholar 

  164. Larsson C (2006) Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18:276–284

    Article  CAS  PubMed  Google Scholar 

  165. Kolkova K, Stensman H, Berezin V, Bock E, Larsson C (2005) Distinct roles of PKC isoforms in NCAM-mediated neurite outgrowth. J Neurochem 92:886–894

    Article  CAS  PubMed  Google Scholar 

  166. Amadio M, Battaini F, Pascale A (2006) The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol Res 54:317–325

    Article  CAS  PubMed  Google Scholar 

  167. Teng F, Tang B (2006) Axonal regeneration in adult CNS neurons: signaling molecules and pathways. J Neurochem 96:1501–1508

    Article  CAS  PubMed  Google Scholar 

  168. Min DS, Ahn BH, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH (2001) Expression and regulation of phospholipase D during neuronal differentiation of PC12 cells. Neuropharmacology 41:384–391

    Article  CAS  PubMed  Google Scholar 

  169. Sena CM, Santos RM, Standen NB, Boarder MR, Rosario LM (2001) Isoformspecific inhibition of voltage-sensitive Ca2+ channels by protein kinase C in adrenal chromaffin cells. FEBS Lett 492:146–150

    Article  CAS  PubMed  Google Scholar 

  170. Hernandez-Fuentes MP, Warrens AN, Lecher RI (2003) Immunologic monitoring. Immunological Rev 196:247–264

    Article  CAS  Google Scholar 

  171. Manz R, Assenmacher M, Pflüger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A 92:1921–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fontainhas AM, Obukhov AG, Nowycky MC (2005) Protein kinase Ca modulates depolarization-evoked changes of intracellular Ca2+ concentration in a rat pheochromocytoma cell line. Neuroscience 133:393–403

    Article  CAS  PubMed  Google Scholar 

  173. Stojanović I, Baumgartner W, van der Velden TJG, Terstappen LWMM, Schasfoort RBM (2016) Modeling single cell antibody excretion on a biosensor. Anal Biochem 504:1–3

    Article  PubMed  Google Scholar 

  174. Swennenhuis JF, Tibbe AG, Stevens M, Katika MR, van Dalum J, Tong HD, van Rijn CJ, Terstappen LW (2015) Self-seeding microwell chip for the isolation and characterization of single cells. Lab Chip 15:3039–3046

    Article  CAS  PubMed  Google Scholar 

  175. Abali F, Stevens M, Tibbe AGJ, Terstappen LWMM, van der Velde PN, Schasfoort RBM (2017) Isolation of single cells for protein therapeutics using microwell selection and surface plasmon resonance imaging. Anal Biochem 531:45–47

    Article  CAS  PubMed  Google Scholar 

  176. Puttharugsa C, Wangkam T, Huangkamhang N, Gajanandana O, Himananto O, Sutapun B, Amarit R, Somboonkaew A, Srikhirin T (2011) Development of surface plasmon resonance imaging for detection of Acidovorax avenae subsp citrulli (Aac) using specific monoclonal antibody. Biosens Bioelectron 26:2341–2346

    Article  CAS  PubMed  Google Scholar 

  177. Yodmongkol S, Thaweboon S, Thaweboon B, Puttharugsa C, Sutapun B, Amarit R, Somboonkaew A, Srikhirin T (2016) Application of surface plasmon resonance biosensor for the detection of Candida albicans. Jpn J Appl Phys 55:02BE03

    Google Scholar 

  178. Morlay A, Piat F, Mercey T, Roupioz Y (2016) Immunological detection of Cronobacter and Salmonella in powdered infant formula by plasmonic label-free assay. Lett Appl Microbiol 62:459–465

    Article  CAS  PubMed  Google Scholar 

  179. Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona MG, Durmort C, Vernet T, Calemczuk R, Livache T (2013) On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip 13:4024–4032

    Article  CAS  PubMed  Google Scholar 

  180. Mondani L, Roupioz Y, Delannoy S, Fach P, Livache T (2014) Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices. J Appl Microbiol 117:537–546

    Article  CAS  PubMed  Google Scholar 

  181. Zordan M D, Grafton M M G, Acharya G, Reece LM, Cooper CL, Aronson AI, Park K, Leary JF (2009) Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry Part A 75A:155–162. https://doi.org/10.1002/cyto.a.20692

  182. McKillip JL, Jaykus LA, Drake M (1998) rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl Environ Microbiol 64:4264–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Foudeh AM, Daoud JT, Faucher SP, Veres T, Tabrizian M (2014) Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosens Bioelectron 52:129–135

    Article  CAS  PubMed  Google Scholar 

  184. Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M (2015) Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal Bioanal Chem 407:5541–5545

    Google Scholar 

  185. Bulard E, Bouchet-Spinelli A, Chaud P, Roget A, Calemczuk R, Fort S, Livache T (2015) Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal Chem 87:1804–1811

    Article  CAS  PubMed  Google Scholar 

  186. Syal K, Iriya R, Yang YZ, Yu H, Wang SP, Haydel SE, Chen HY, Tao NJ (2016) Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano 10:845–852

    Article  CAS  PubMed  Google Scholar 

  187. Syal K, Wang W, Shan XN, Wang SP, Chen HY, Tao NJ (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137

    Article  CAS  PubMed  Google Scholar 

  188. Medina MB, van Houten L, Cooke PH, Tu SI (1997) Real-time analysis of antibody binding interactions with immobilized E. coli O157:H7 cells using the BIAcore. Biotechnol Tech 11:173–176

    Google Scholar 

  189. Abadian PN, Goluch ED (2015) Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings. Anal Methods 7:115–122

    Article  CAS  Google Scholar 

  190. Chicurel M (2000) Slimebusters. Nature 408:284–286. https://doi.org/10.1038/35042737

    Article  CAS  PubMed  Google Scholar 

  191. Zmantar T, Chaieb K, Miladi H, Mahdouani K, Bakhrouf A (2006) Detection of the intercellular adhesion loci (ICA) in clinical Staphylococcus aureus strains responsible for hospital acquired auricular infection. Ann Microbiol 56:349. https://doi.org/10.1007/BF03175030

    Article  CAS  Google Scholar 

  192. Fang Y, Shen Z, Li L, Cao Y, Gu LY, Gu Q, Zhong XQ, Yu CH, Li YM (2010) A study of the efficacy of bacterial biofilm cleanout for gastrointestinal endoscopes. World J Gastroenterol 16:1019–1024. https://doi.org/10.3748/wjg.v16.i8.1019

  193. Gilbert P, McBain AJ (2001) Biofilms: Their impact on health and their recalcitrance toward biocides. Am J Infect Control 29:252–255

    Article  CAS  PubMed  Google Scholar 

  194. Aninwene GE, Abadian PN, Ravi V, Taylor EN, Hall DM, Mei A, Jay GD, Goluch ED, Webster TJ (2015) Lubricin: a novel means to decrease bacterial adhesion and proliferation. J Biomed Mater Res 103:451–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Particle Assays. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_7

Download citation

Publish with us

Policies and ethics