Skip to main content

Analysis of Molecules and Biomolecules

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 131 Accesses

Abstract

This chapter is designed to use SPRi for a comprehensive analysis of molecules that can impact on the gold sensor chip through various interaction effects such as non-specific or specific adsorption or deposition, or just flowing past the vicinity of the sensor surface

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorenzen JM, Kaucsar T, Schauerte C, Schmitt R, Rong S, Hubner A, Scherf K, Fiedler J, Martino F, Kumarswamy R, Kolling M, Sorensen I, Hinz H, Heineke J, van Rooij E, Haller H, Thum T (2014) MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol 25:2717–2729. https://doi.org/10.1681/ASN.2013121329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17∼92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci USA 110:10765–10770. https://doi.org/10.1073/pnas.1301693110

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104:3432–3437. https://doi.org/10.1073/pnas.0611192104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, Chang AN, Li S, Kalra A, Grafals M, Portilla D, MacKenna DA, Orkin SH, Duffield JS (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:21ra118

    Google Scholar 

  5. Bhatt K, Kato M, Natarajan R (2016) Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol-Renal Physiol 310:F109–F118. https://doi.org/10.1152/ajprenal.00387.2015

  6. Lu W, Chen Y, Liu Z, Tang W, Feng Q, Sun J, Jiang X (2016) Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing. ACS Nano 10:6685–6692. htps://doi.org/https://doi.org/10.1021/acsnano.6b01903

  7. de Planell-Saguer M, Rodicio MC, Mourelatos Z (2010) Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc 5:1061–1073

    Article  PubMed  Google Scholar 

  8. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Huang H, Yu X, Qi L (2005) Chiral recognition of dextran sulfate with d- and l-cystine studied by multiwavelength surface plasmon resonance. Carbohyd Res 340:2024–2029

    Article  CAS  Google Scholar 

  10. Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  PubMed  Google Scholar 

  11. Yan Y, Shen B, Wang H, Sun X, Cheng W, Zhao H, Ju H, Ding S (2015) A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation. Analyst 140:5469–5474

    Article  CAS  PubMed  Google Scholar 

  12. Causa F, Aliberti A, Cusano AM, Battista E, Netti PA (2015) Supramolecular spectrally encoded microgels with double strand probes for absolute and direct miRNA fluorescence detection at high sensitivity. J Am Chem Soc 137:1758–1761. https://doi.org/10.1021/ja511644b

    Article  CAS  PubMed  Google Scholar 

  13. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3:321–329

    Article  CAS  PubMed  Google Scholar 

  14. Alhasan AH, Kim DY, Daniel WL, Watson E, Meeks JJ, Thaxton CS, Mirkin CA (2012) Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid–gold nanoparticle conjugates. Anal Chem 84:4153–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qavi AJ, Bailey RC (2010) Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed 49:4608–4611

    Google Scholar 

  16. Qavi AJ, Kindt JT, Gleeson MA, Bailey RC (2011) Anti-DNA:RNA sntibodies and silicon photonic microring resonators: Increased sensitivity for multiplexed microRNA detection. Anal Chem 83:5949–5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye LP, Hu J, Liang L, Zhang CY (2014) Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun 50:11883–11886

    Article  CAS  Google Scholar 

  18. Li X, Cheng W, Li D, Wu J, Ding X, Cheng Q, Ding S (2016) A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosens Bioelectron 80:98–104

    Article  CAS  PubMed  Google Scholar 

  19. Ding X, Cheng W, Li Y, Wu J, Li X, Cheng Q, Ding S (2017) An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens Bioelectron 87:345–351

    Article  CAS  PubMed  Google Scholar 

  20. Fang S, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu F, Xu J, Chen Y (2017) Surface plasmon resonance imaging detection of sub-femtomolar microRNA. Anal Chem 89:10071–10077

    Article  CAS  PubMed  Google Scholar 

  22. Fasoli JB, Corn RM (2015) Surface enzyme chemistries for ultrasensitive microarray biosensing with SPR imaging. Langmuir 31:9527–9536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu J, Huang Y, Bian X, Li D, Cheng Q, Ding S (2016) Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system. Opt Commun 377:24–32

    Article  CAS  Google Scholar 

  24. Wang Z, Chen Y (2001) Detection of metal ions using wavelength interrogation surface plasmon resonance spectroscopy with calixarane derivatives as sensing films. Anal Lett 34:2609–2619

    Article  CAS  Google Scholar 

  25. Wang Z, Chen Y (2001) Analysis of mono- and oligo-saccharides by multi-wavelength surface plasmon resonance (SPR) spectroscopy. Carbohyd Res 332:209–213

    Article  Google Scholar 

  26. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng K, Li H, Peng Y (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184:2637–2644

    Article  CAS  Google Scholar 

  28. Wang R, Minunni M, Tombelli S, Mascini M (2004) A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor. Biosens Bioelectron 20:598–605

    Article  CAS  PubMed  Google Scholar 

  29. Wei X, Duan X, Zhou X, Wu J, Xu H, Min X, Ding S (2018) A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement. Analyst 143:3134–3140

    Article  CAS  PubMed  Google Scholar 

  30. Vaisocherova H, Sipova H, Visova I, Bockova M, Springer T, Ermini ML, Song X, Krejcik Z, Chrastinova L, Pastva O, Pimkova K, Dostalova Merkerova M, Dyr JE, Homola J (2015) Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron 70:226–231

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Hu F, Yang W, Xu J, Chen Y (2017) A critical review of advances in surface plasmon resonance imaging sensitivity. Trends Anal Chem 97:354–362

    Article  CAS  Google Scholar 

  32. Zhou WJ, Chen Y, Corn RM (2011) Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal Chem 83:3897–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Foudeh AM, Daoud JT, Faucher SP, Veres T, Tabrizian M (2014) Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosens Bioelectron 52:129–135

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Munir A, Zhu Z, Zhou HS (2010) Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal Chem 82:6782–6789

    Article  CAS  PubMed  Google Scholar 

  35. Hu W, He G, Zhang H, Wu X, Li J, Zhao Z, Qiao Y, Lu Z, Liu Y, Li CM (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86:4488–4493

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, Nie Y (2016) Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens Bioelectron 77:1001–1007

    Article  CAS  PubMed  Google Scholar 

  37. Hong X, Hall EA (2012) Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst 137:4712–4719

    Article  CAS  PubMed  Google Scholar 

  38. Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29:203002. https://doi.org/10.1088/1361-648X/aa60f3

  39. Lou X, Lewis MS, Gorman CB, He L (2005) Detection of DNA point mutation by atom transfer radical polymerization. Anal Chem 77:4698–4705

    Article  CAS  PubMed  Google Scholar 

  40. Paz JLD, Noti C, Seeberger PH (2006) Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc 128:2766–2767

    Article  PubMed  Google Scholar 

  41. Tully SE, Rawat M, Hsieh-Wilson LC (2006) Discovery of a TNF-α antagonist using chondroitin sulfate microarrays. J Am Chem Soc 128:7740–7741

    Article  CAS  PubMed  Google Scholar 

  42. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, Van Die I, Burton DR, Wilson IA, Cummings RD, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101:17033–17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paz JLD, Spillmann D, Seeberger PH (2006b) Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin. Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin. Chem Commun 3116–3118. https://doi.org/10.1039/B605318A

  44. Bryan MC, Fazio F, Lee HK, Huang CY, Chang A, Best MD, Calarese DA, Blixt O, Paulson JC, Burton D, Wilson IA, Wong CH (2004) Covalent display of oligosaccharide arrays in microtiter plates. J Am Chem Soc 126:8640–8641

    Article  CAS  PubMed  Google Scholar 

  45. Köhn M, Wacker R, Peters C, Schröder H, Soulère L, Breinbauer R, Niemeyer CM, Waldmann H (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew Chem Int Ed 42:5830–5834

    Article  Google Scholar 

  46. Houseman BT, Mrksich M (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 9:443–454

    Article  CAS  PubMed  Google Scholar 

  47. Park S, Lee MR, Pyo SJ, Shin I (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J Am Chem Soc 126:4812–4819

    Article  CAS  PubMed  Google Scholar 

  48. Karamanska R, Clarke J, Blixt O, Macrae JI, Zhang JQ, Crocker PR, Laurent N, Wright A, Flitsch SL, Russell DA, Field RA (2008) Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J 25:69–74

    Article  CAS  PubMed  Google Scholar 

  49. Lee MR, Shin I (2005) Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org Lett 7:4269–4272

    Article  CAS  PubMed  Google Scholar 

  50. Park S, Lee MR, Shin I (2009) Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjugate Chem 20:155–162

    Article  CAS  Google Scholar 

  51. Zhou X, Zhou J (2006) Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate–protein interaction. Biosens Bioelectron 21:1451–1458

    Article  CAS  PubMed  Google Scholar 

  52. Hatanaka Y, Kempin U, Jong-Jip P (2000) One-step synthesis of biotinyl photoprobes from unprotected carbohydrates. J Org Chem 65:5639–5643

    Article  CAS  PubMed  Google Scholar 

  53. Liang K, Chen Y (2012) Elegant chemistry to directly anchor intact saccharides on solid surfaces used for the fabrication of bioactivity-conserved saccharide microarrays. Bioconjug Chem 23:1300–1308

    Article  CAS  PubMed  Google Scholar 

  54. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Google Scholar 

  55. Jayaraman N (2009) Multivalent ligand presentation as a central concept to study intricate carbohydrate–protein interactions. Chem Soc Rev 38:3463–3483

    Article  CAS  PubMed  Google Scholar 

  56. Wang T, Boer-Duchemin E, Zhang Y, Comet G, Dujardin G (2011) Excitation of propagating surface plasmons with a scanning tunneling microscope. Nanotechnology 22:175201. https://doi.org/10.1088/0957-4484/22/17/175201

    Article  CAS  PubMed  Google Scholar 

  57. Bernhard W, Avrameas S (1971) Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exptl Cell Res 64:232–235

    Article  CAS  PubMed  Google Scholar 

  58. Villafranca JJ, Viola RE (1974) Proton nuclear magnetic resonance studies of the manganese (II) binding site of concanavalin A: Effect of saccharides on the solvent relaxation rates. Arch Biochem Biophy 165:51–59

    Article  CAS  Google Scholar 

  59. Moothoo DN, Naismith JH (1999) A general method for co-crystallization of concanavalin A with carbohydrates. Acta Cryst D55:353–355. https://doi.org/10.1107/S0907444998008919

    Article  CAS  Google Scholar 

  60. Liu W, Chen Y, Yan MD (2008) Surface plasmon resonance imaging of limited glycoprotein samples. Analyst 133:1268–1273

    Article  CAS  PubMed  Google Scholar 

  61. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Google Scholar 

  62. Teramura Y, Iwata H (2007) Label-free immunosensing for α-fetoprotein in human plasma using surface plasmon resonance. Anal Biochem 365:201–207

    Article  CAS  PubMed  Google Scholar 

  63. Kim S, Lee HJ (2015) Direct detection of α-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer–antibody sandwich assay. Anal Chem 87:7235–7240

    Article  CAS  PubMed  Google Scholar 

  64. Sendroiu IE, Warner ME, Corn RM (2009) Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. Langmuir 25:11282–11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spoto G, Minunni M (2012) Surface plasmon resonance imaging: What next? J Phys Chem Lett 3:2682–2691

    Article  CAS  PubMed  Google Scholar 

  66. Malic L, Sandros MG, Tabrizian M (2011) Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors. Anal Chem 83:5222–5229

    Article  CAS  PubMed  Google Scholar 

  67. Mariani S, Scarano S, Spadavecchia J, Minunni M (2015) A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens Bioelectron 74:981–988

    Article  CAS  PubMed  Google Scholar 

  68. Hu WH, Chen HM, Zhang HH, He GL, Li X, Zhang XX, Liu Y, Li CM (2014) Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. J Colloid Interface Sci 431:71–76

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Cheng Q (2012) Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Anal Chem 84:3179–3186

    Article  CAS  PubMed  Google Scholar 

  70. Hu WH, Chen HM, Shi ZZ, Yu L (2014) Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal Biochem 453:16–21

    Article  CAS  PubMed  Google Scholar 

  71. Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan PX, Deng SY, Xin P, Ji XB, Shan D, Cosnier S (2015) Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis. Biosens Bioelectron 74:183–189

    Google Scholar 

  73. Fenzl C, Hirsch T, Baeumner AJ (2015) Liposomes with high refractive index encapsulants as tunable signal amplification tools in surface plasmon resonance spectroscopy. Anal Chem 87:11157–11163

    Article  CAS  PubMed  Google Scholar 

  74. Roy B, Das T, Maiti TK, Chakraborty S (2011) Effect of fluidic transport on the reaction kinetics in lectin microarrays. Anal Chim Acta 701:6–14

    Article  CAS  PubMed  Google Scholar 

  75. Pallarola D, von Bildering C, Pietrasanta LI, Queralto N, Knoll W, Battaglini F, Azzaroni O (2012) Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Phys Chem Chem Phys 14:11027–11039

    Article  CAS  PubMed  Google Scholar 

  76. Huang CF, Yao GH, Liang RP, Qiu JD (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50:305–310

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Wang X, Xu J, Chen Y (2016) Chemical strategy to stepwise amplification of signals in surface plasmon resonance imaging detection of saccharides and gycoconjugates. Anal Chem 88:10011–10018

    Article  CAS  PubMed  Google Scholar 

  78. Huang H, Chen Y (2006) Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging. Biosens Bioelectron 22:644–648

    Article  CAS  PubMed  Google Scholar 

  79. Shen G, Han Z, Liu W, Chen Y (2007) Color surface plasmon resonance imaging of protein microdots arrays. Chem Lett 36:926–927

    Article  CAS  Google Scholar 

  80. Huang H, Chen Y (2006) Surface plasmon resonance imaging studies for proteolytic hydrolysis of proteins. Chem Lett 35:372–373

    Article  CAS  Google Scholar 

  81. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B 121:158–177

    Article  CAS  Google Scholar 

  82. Figueroa B, Chen Y, Berry K, Francis A, Fu D (2017) Label-free chemical imaging of latent fingerprints with stimulated Raman scattering microscopy. Anal Chem 89:4468–4473

    Article  CAS  PubMed  Google Scholar 

  83. Hai J, Li T, Su J, Liu W, Ju Y, Wang B, Hou Y (2018) Reversible response of luminescent terbium(III)-nanocellulose hydrogels to anions for latent fingerprint detection and encryption. Angew Chem Int Ed 57:6786–6790

    Article  CAS  Google Scholar 

  84. Wang YL, Li C, Qu HQ, Fan C, Zhao PJ, Tian R, Zhu MQ (2020) Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission. J Am Chem Soc 142:7497–7505

    Article  CAS  PubMed  Google Scholar 

  85. Hinners P, Thomas M, Lee YJ (2020) Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal Chem 92:3125–3132

    Article  CAS  PubMed  Google Scholar 

  86. Brunelle E, Huynh C, Alin E, Eldridge M, Le AM, Halamkova L, Halamek J (2018) Fingerprint analysis: moving toward multiattribute determination via individual markers. Anal Chem 90:980–987

    Article  CAS  PubMed  Google Scholar 

  87. Brunelle E, Thibodeau B, Shoemaker A, Halamek J (2019) Step toward roadside sensing: noninvasive detection of a THC metabolite from the sweat content of fingerprints. ACS Sens 4:3318–3324

    Article  CAS  PubMed  Google Scholar 

  88. Li S, Lu Y, Liu L, Low SS, Su B, Wu J, Zhu L, Li C, Liu Q (2019) Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sens Actuator B-Chem 285:34–41

    Article  CAS  Google Scholar 

  89. Li M, Lee HJ, Condon AE, Corn RM (2002) DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18:805–812

    Article  CAS  Google Scholar 

  90. Hooton K, Han W, Li L (2016) Comprehensive and quantitative profiling of the human sweat submetabolome using high-performance chemical isotope labeling LC-MS. Anal Chem 88:7378–7386

    Article  CAS  PubMed  Google Scholar 

  91. Williams GT, Kedge JL, Fossey JS (2021) Molecular boronic acid-based saccharide sensors. ACS Sens 6:1508–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  PubMed  Google Scholar 

  94. Zhao J, Lin Y, Wu J, Nyein HYY, Bariya M, Tai LC, Chao M, Ji W, Zhang G, Fan Z, Javey A (2019) A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens 4:1925–1933

    Article  CAS  PubMed  Google Scholar 

  95. McAvoy CR, Moore CC, Aguiar EJ, Ducharme SW, Schuna JM Jr, Barreira TV, Chase CJ, Gould ZR, Amalbert-Birriel MA, Chipkin SR, Staudenmayer J, Tudor-Locke C, Mora-Gonzalez J (2021) Cadence (steps/min) and relative intensity in 21 to 60-year-olds: the CADENCE-adults study. Int J Behav Nutr Phys Act 18:27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Analysis of Molecules and Biomolecules. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_6

Download citation

Publish with us

Policies and ethics