Skip to main content

Interaction and Reaction

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 130 Accesses

Abstract

Interactions and reactions cover a series of molecular events from weak to strong that universally exist in the world, especially in biological processes. As revealed in Chaps. 2 and 4, SPRi needs to make use of various interactions and reactions to work and therefore is able to study them in turn. This also needs to thank to the invention of non-destructive light source such as LED and semiconductor lasers and the fast response of light, which make the theoretical possibility of SPRi becomes true. In fact, SPRi is now able to do researches with native or intact substances in various natural and non-natural environments wherever you prefer, suitable for the direct and indirect studies of dynamics and thermodynamics of various interactions or reactions under designable and/or variable conditions, including physiological conditions that are critical to have insights into the realistic biometric events. Extending form this, SPRi is applicable to the quantitative and qualitative analysis of various substances involving various processes that will be discussed in Chaps. 6, 7 and 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan CE, Corn RM (1997) Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal Chem 69:1449–1456

    Article  CAS  PubMed  Google Scholar 

  2. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69:4948–4956

    Google Scholar 

  3. Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal Chem 71:3928–3934

    Google Scholar 

  4. Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72:6003–6009

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Lee HJ, Condon AE, Corn RM (2002) DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18:805–812

    Article  CAS  Google Scholar 

  6. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein—DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121:8044–8051

    Article  CAS  Google Scholar 

  8. Frutos AG, Brockman JM, Corn RM (2000) Reversible protection and reactive patterning of amine- and hydroxyl-terminated self-assembled monolayers on gold surfaces for the fabrication of biopolymer arrays. Langmuir 16:2192–2197

    Article  CAS  Google Scholar 

  9. Wang X, Xu J, Liu C, Chen Y (2016) Specific interaction of platinated DNA and proteins by surface plasmon resonance imaging. RSC Adv 6:21900–21906

    Article  CAS  Google Scholar 

  10. Dong Y, Wilkop T, Xu D, Wang Z, Cheng Q (2008) Microchannel chips for the multiplexed analysis of human immunoglobulin G–antibody interactions by surface plasmon resonance imaging. Anal Bioanal Chem 390:1575–1583

    Article  CAS  PubMed  Google Scholar 

  11. Morton TA, Myszka DG, Chaiken IM (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal Biochem 227:176–185

    Article  CAS  PubMed  Google Scholar 

  12. Myszka DG, Arulanantham PR, Sana T, Wu ZN, Morton TA, Ciardelli TL (1996) Kinetic analysis of ligand binding to interleukin-2 receptor complexes created on an optical biosensor surface. Protein Sci 5:2468–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Wilkop T, Xu D, Dong Y, Ma G, Cheng Q (2007) Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 389:819–825

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Chen Y-P, Guo J-S, Shen Y, Yang J-X, Fang F, Li C, Gao X, Wang G-X (2014) Adsorption behavior of tightly bound extracellular polymeric substances on model organic surfaces under different pH and cations with surface plasmon resonance. Water Res 57:31–39

    Article  CAS  PubMed  Google Scholar 

  15. Heyse S, Ernst OP, Dienes Z, Hofmann KP, Vogel H (1998) Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. Biochemistry 37:507–522

    Article  CAS  PubMed  Google Scholar 

  16. Bieri C, Ernst OP, Heyse S, Hofmann KP, Vogel H (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotechnol 17:1105–1108

    Article  CAS  PubMed  Google Scholar 

  17. Buijs J, Lichtenbelt J, Norde W, Lyklema J (1995) Adsorption of monoclonal IgGs and their F(abʹ)2 fragments onto polymeric surfaces. Colloids Surf B Biointerfaces 5:11–23

    Article  CAS  Google Scholar 

  18. Neubert H, Jacoby ES, Bansal SS, Iles RK, Cowan DA, Kicman AT (2002) Orientation of an immunoglobulin G using recombinant protein G. Anal Chem 74:3677–3683

    Article  CAS  PubMed  Google Scholar 

  19. Chen H, Huang J, Lee J, Hwang S, Koh K (2010) Surface plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sens Actuators B 147:548–553

    Article  CAS  Google Scholar 

  20. Kašpárková J, Brabec V (1995) Recognition of DNA interstrand cross-links of cis-diamminedichloro-platinum (II) and its trans isomer by DNA-binding proteins. Biochemistry 34:12379–12387

    Article  PubMed  Google Scholar 

  21. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin—DNA adducts. Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  22. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712

    Article  CAS  PubMed  Google Scholar 

  23. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  24. Du Z, Luo Q, Yang L, Bing T, Li X, Guo W, Wu K, Zhao Y, Xiong S, Shangguan D, Wang F (2014) Mass spectrometric proteomics reveals that nuclear protein positive cofactor PC4 selectively binds to cross-linked DNA by a trans-platinum anticancer complex. J Am Chem Soc 136:2948–2951

    Google Scholar 

  25. Banerjee S, Kumar BRP, Kundu TK (2004) General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol 24:2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marini V, Christofis P, Novakova O, Kašpárková J, Farrell N, Brabec V (2005) Conformation, protein recognition and repair of DNA interstrand and intrastrand cross-links of antitumor trans-[PtCl2(NH3)(thiazole)]. Nucleic Acids Res 33:5819–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bolduc OR, Masson J-F (2008) Monolayers of 3-mercaptopropylamino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir 24:12085–12091

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto A, Ando Y, Yoshioka K, Saito K, Tanabe T, Shirakawa H, Yoshida M (1997) Difference in affinity for DNA between HMG proteins 1 and 2 determined by surface plasmon resonance measurements. J Biochem 122:586–594

    Article  CAS  PubMed  Google Scholar 

  29. Krishnamoorthy G, Beusink JB, Schasfoort RBM (2010) High-throughput surface plasmon resonance imaging-based biomolecular kinetic screening analysis. Anal Methods 2:1020–1025

    Article  CAS  Google Scholar 

  30. Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA–protein interactions: methods for detection and analysis. Mol Cell Biochem 365:279–299

    Article  CAS  PubMed  Google Scholar 

  31. Pillet F, Sanchez A, Formosa C, Severac M, Trévisiol E, Bouet JY, Leberre VA (2013) Dendrimer functionalization of gold surface improves the measurement of protein–DNA interactions by surface plasmon resonance imaging. Biosens Bioelectron 43:148–154

    Article  CAS  PubMed  Google Scholar 

  32. Edwards PR, Leatherbarrow RJ (1997) Determination of association rate constants by an optical biosensor using initial rate analysis. Anal Biochem 246:1–6

    Article  CAS  PubMed  Google Scholar 

  33. Hoebel S, Vornicescu D, Bauer M, Fischer D, Keusgen M, Aigner A (2014) A novel method for the assessment of targeted PEI-based nanoparticle binding based on a static surface plasmon resonance system. Anal Chem 86:6827–6835

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Interaction and Reaction. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_5

Download citation

Publish with us

Policies and ethics