Skip to main content
Log in

DNA–protein interactions: methods for detection and analysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

DNA-binding proteins control various cellular processes such as recombination, replication and transcription. This review is aimed to summarize some of the most commonly used techniques to determine DNA–protein interactions. In vitro techniques such as footprinting assays, electrophoretic mobility shift assay, southwestern blotting, yeast one-hybrid assay, phage display and proximity ligation assay have been discussed. The highly versatile in vivo techniques such as chromatin immunoprecipitation and its variants, DNA adenine methyl transferase identification as well as 3C and chip-loop assay have also been summarized. In addition, some in silico tools have been reviewed to provide computational basis for determining DNA–protein interactions. Biophysical techniques like fluorescence resonance energy transfer (FRET) techniques, FRET–FLIM, circular dichroism, atomic force microscopy, nuclear magnetic resonance, surface plasmon resonance, etc. have also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat Biotechnol 17:573–577

    Article  PubMed  CAS  Google Scholar 

  2. Bulyk ML (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr Opin Biotechnol 17:422–430

    Article  PubMed  CAS  Google Scholar 

  3. Fox KR, Waring MJ (1987) The use of micrococcal nuclease as a probe for drug-binding sites on DNA. Biochim Biophys Acta 909:145–155

    PubMed  CAS  Google Scholar 

  4. Dyke MWV, Dervan PB (1982) Footprinting with MPE.Fe(II)—complementary-strand analyses of distamycin-binding and actinomycin-binding sites on heterogeneous DNA. Cold Spring Harb Symp Quant Biol 47:347–353

    Article  Google Scholar 

  5. Dyke MWV, Dervan PB (1983) Methidiumpropyl-EDTA-Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA. Nucleic Acids Res 11:5555–5567

    Article  PubMed  Google Scholar 

  6. Spassky A, Sigman DS (1985) Nuclease activity of 1,10-phenanthroline-copper ion. Conformational analysis and footprinting of the lac operon. Biochemistry 24:8050–8056

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen PE, Hiort C, Sonnichsen SH, Buchardt O, Dahl O, Norden B (1992) DNA binding and photocleavage by uranyl(VI)(UO22+) salts. J Am Chem Soc 114:4967–4975

    Article  CAS  Google Scholar 

  8. Nielsen PE (1992) Uranyl photofootprinting of triple helical DNA. Nucleic Acids Res 20:2735–2739

    Article  PubMed  CAS  Google Scholar 

  9. Churchill MEA, Hayes JJ, Tullius TD (1990) Detection of drug binding to DNA by hydroxyl radical footprinting. Relationship of distamycin binding sites to DNA structure and positioned nucleosomes on 5S RNA genes of Xenopus. Biochemistry 29:6043–6050

    Article  PubMed  CAS  Google Scholar 

  10. Cons BMG, Fox KR (1989) High resolution hydroxy radical footprinting of the binding of mithramydn and related antibiotics to DNA. Nucleic Acids Res 17:5447–5460

    Article  PubMed  CAS  Google Scholar 

  11. Jain SS, Tullius TD (2008) Footprinting protein–DNA complexes using the hydroxyl radical. Nat Protocols 3:1092–1100

    Article  CAS  Google Scholar 

  12. Shafer GE, Price MA, Tullius TD (1989) Use of the hydroxyl radical and gel electrophoresis to study DNA structure. Electrophoresis 10:397–404

    Article  PubMed  CAS  Google Scholar 

  13. Price MA, Tullius TD (1992) Using hydroxyl radical to probe DNA structure. In: David MJ, Lilley JED (eds) DNA structures part b: chemical and electrophoretic analysis of DNA, 11th edn. Academic Press, San Diego, pp 194–219

    Google Scholar 

  14. Routier S, Vezin H, Lamour E, Bernier JL, Catteau JP, Bailly C (1999) DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes. Nucleic Acids Res 27:4160–4166

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen PE (1990) Chemical and photochemical probing of DNA complexes. J Mol Recognit 3:1–25

    Article  PubMed  CAS  Google Scholar 

  16. Bailly C, Waring MJ (1995) Comparison of different footprinting methodologies for detecting binding sites for a small ligand on DNA. J Biomol Struct Dyn 12:869–898

    PubMed  CAS  Google Scholar 

  17. Drew HR (1984) Structural specificities of five commonly used DNA nucleases. J Mol Biol 176:535–557

    Article  PubMed  CAS  Google Scholar 

  18. Fox KR, Waring MJ (2001) High-resolution footprinting studies of drug-DNA complexes using chemical and enzymatic probes. In: Chaires JB (ed) Drug-nucleic acid interactions. Academic Press, San Diego, pp 412–430

    Chapter  Google Scholar 

  19. Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170

    Article  PubMed  CAS  Google Scholar 

  20. Leblanc B, Moss T (2000) DNAse I footprinting. In: Rapley R (ed) The nucleic acid protocols handbook, 8th edn. Humana Press, Totowa, NJ, pp 729–735

    Google Scholar 

  21. Fox KR (2010) DNAse I footprinting. In: Fox KR (ed) Drug–DNA interaction protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 153–172

    Chapter  Google Scholar 

  22. Bailly C, Kluza J, Martin C, Ellis T, Waring MJ (2005) DNase I footprinting of small molecule binding sites on DNA. In: Walker JM, Herdewijn P (eds) Oligonucleotide synthesis. Humana Press, Totowa, pp 319–342

    Google Scholar 

  23. Wilson DO, Johnson P, McCord BR (2001) Nonradiochemical DNase I footprinting by capillary electrophoresis. Electrophoresis 22:1979–1986

    Article  PubMed  CAS  Google Scholar 

  24. Yindeeyoungyeon W, Schell MA (2000) Footprinting with an automated capillary DNA sequencer. Biotechniques 29:1034–1036

    PubMed  CAS  Google Scholar 

  25. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010:1–11

    Article  Google Scholar 

  26. Machida M, Kamio H, Sorensen D (1997) Long-range and highly sensitive DNase I foot-printing by an automated infrared DNA sequencer. Biotechniques 23:300–303

    PubMed  CAS  Google Scholar 

  27. Sandaltzopoulos R, Becker PB (1994) Solid phase DNase I footprinting: quick and versatile. Nucleic Acids Res 22:1511–1512

    Article  PubMed  CAS  Google Scholar 

  28. Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) Quantitative DNase footprint titration: a method for studying protein–DNA interactions. In: Hirs CHW, Timasheff SN (eds) Enzyme structure Part K, 9th edn. Academic Press, New York, pp 132–181

    Google Scholar 

  29. Fletcher MC, Fox KR (1996) Dissociation kinetics of actinomycin D from individual GpC sites in DNA. Eur J Biochem 237:164–170

    Article  PubMed  CAS  Google Scholar 

  30. Dhavan GM, Mollah AKMM, Brenowitz M (2002) Equilibrium and kinetic quantitative DNase I footprinting. In: Jones GB (ed) Advances in DNA sequence-specific agents, 4th edn. Elsevier, New York, pp 139–155

    Google Scholar 

  31. Pfeifer GP, Riggs AD (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permealized cells using DNase I and ligation-mediated PCR. Genes Dev 5:1102–1113

    Article  PubMed  CAS  Google Scholar 

  32. Drouin R, Therrien JP, Angers M, Ouellet S (2001) In vivo DNA analysis. In: Moss T (ed) DNA–protein interactions, Humana Press, pp 175–219

  33. McPike MP, Goodisman J, Dabrowiak JC (2001) Drug–RNA footprinting. Methods Enzymol 340:431–449

    Article  PubMed  CAS  Google Scholar 

  34. Liu GL, Yin Y, Kunchakarra S, Mukherjee B et al (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nanotechnol 1:47–52

    Article  PubMed  CAS  Google Scholar 

  35. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protocols 2:1849–1861

    Article  CAS  Google Scholar 

  36. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed  CAS  Google Scholar 

  37. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed  CAS  Google Scholar 

  38. Stockley PG (2009) Filter-binding assays. In: Leblanc B, Moss T, Walker JM (eds) DNA–protein interactions. Humana Press, Towota, pp 1–14

    Google Scholar 

  39. Fried MG, Crothers DM (1984) Kinetics and mechanism in the reaction of gene regulatory proteins with DNA. J Mol Biol 172:263–282

    Article  PubMed  CAS  Google Scholar 

  40. Foulds GJ, Etzkorn FA (1998) A capillary electrophoresis mobility shift assay for protein–DNA binding affinities free in solution. Nucleic Acids Res 26:4304–4305

    Article  PubMed  CAS  Google Scholar 

  41. Xian J, Harrington MG, Davidson EH (1996) DNA-protein binding assays from a single sea urchin egg: a high-sensitivity capillary electrophoresis method. Proc Natl Acad Sci 93:86–90

    Article  PubMed  CAS  Google Scholar 

  42. Dyer RB, Herzog NK (1995) Immunodepletion EMSA: a novel method to identify proteins in a protein–DNA complex. Nucleic Acids Res 23:3345–3346

    PubMed  CAS  Google Scholar 

  43. Labbé S, Stewart G, LaRochelle O, Séguin C, Poirier GG (2001) Identification of sequence-specific DNA-binding proteins by southwestern blotting. In: Moss T, Walker JM (eds) DNA–protein interactions. Humana Press, Totowa, pp 255–264

    Google Scholar 

  44. Guille M, Kneale G (1997) Methods for the analysis of DNA–protein interactions. Mol Biotechnol 8:35–52

    Article  PubMed  CAS  Google Scholar 

  45. Handen JS, Rosenberg HF (1997) An improved method for southwestern blotting. Front Biosci 2:9–11

    Google Scholar 

  46. Siu FKY, Lee LTO, Chow BKC (2008) Southwestern blotting in investigating transcriptional regulation. Nat Protocols 3:51–58

    Article  CAS  Google Scholar 

  47. Bowen B, Steinberg J, Laemmli UK, Weintraub H (1980) The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res 8:1–20

    Article  PubMed  CAS  Google Scholar 

  48. Wei C-C, Guo D-F, Zhang S-L, Ingelfinger JR, Chan JSD (2005) Heterogenous nuclear ribonucleoprotein F modulates angiotensinogen gene expression in rat kidney proximal tubular cells. J Am Soc Nephrol 16:616–628

    Article  PubMed  CAS  Google Scholar 

  49. Jiang D, Jia Y, Zhou Y, Jarrett HW (2009) Two-dimensional southwestern blotting and characterization of transcription factors on-blot. J Proteome Res 8:3693–3701

    Article  PubMed  CAS  Google Scholar 

  50. Franke C, Grafe D, Bartsch H, Bachmann M (2009) Use of non-radioactive detection method for north- and south-western blot. In: Kurien BT, Scofield RH (eds) Protein blotting and detection. Humana Press, New York, pp 441–449

    Chapter  Google Scholar 

  51. Dooley S, Walter C, Blin N (1992) Non Radioactive southwestern analysis using chemiluminescence detection. Biotechniques 13:540–543

    PubMed  CAS  Google Scholar 

  52. Jia Y, Jiang D, Jarrett HW (2010) Repeated probing of southwestern blots using alkaline phosphatase stripping. J Chromatogr A 1217:7177–7181

    Article  PubMed  CAS  Google Scholar 

  53. Papavassiliou AG (2001) Determination of a Transcription Factor Binding Site by Nuclease Protection Footprinting onto southwestern Blots. In: Walker JM, Moss T (eds) DNA–protein interactions. Humana Press, Towota, pp 135–149

    Google Scholar 

  54. Polycarpou-Schwarz M, Papavassiliou AG (1993) Distinguishing specific from nonspecific complexes on southwestern blots by a rapid DMS protection assay. Nucleic Acids Res 21:2531–2532

    Article  PubMed  CAS  Google Scholar 

  55. Keller AD, Maniatis T (1991) Selection of sequences recognized by a DNA binding protein using a preparative southwestern blot. Nucleic Acids Res 19:4675–4680

    Article  PubMed  CAS  Google Scholar 

  56. Stuempfle KJ, Floros J (1997) Caution is advised when cDNA expression libraries are screened by southwestern methodologies. Biotechniques 22:260–264

    PubMed  CAS  Google Scholar 

  57. Asaka Y, Watanabe J, Kanamura S (1998) Localization of xenobiotic-responsive element binding protein in rat hepatocyte nuclei after methylcholanthrene administration as revealed by in situ southwestern hybridization. J Histochem Cytochem 46:825–832

    Article  PubMed  CAS  Google Scholar 

  58. Koji T, Komuta K, Nozawa M, Yamada S, Nakane PK (1994) Localization of cyclic adenosine 3,5′-monophosphate-responsive element (CRE)-binding proteins by southwestern histochemistry. J Histochem Cytochem 42:1399–1405

    Article  PubMed  CAS  Google Scholar 

  59. Shin M, Hishikawa Y, S-ichi Izumi, Koji T, Shin M, Hishikawa Y, Izumi S, Koji T (2002) Southwestern histochemistry as a molecular histochemical tool for analysis of expression of transcription factors: application to paraffin-embedded tissue sections. Med Electron Microsc 35:217–224

    Article  PubMed  CAS  Google Scholar 

  60. Jiang D, Jarrett HW, Haskins WE (2009) Methods for proteomic analysis of transcription factors. J Chromatogr A 1216:6881–6889

    Article  PubMed  CAS  Google Scholar 

  61. Wang MM, Reed RR (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364:121–126

    Article  PubMed  CAS  Google Scholar 

  62. Vidal M, Legrain P (1999) Yeast forward and reverse “n”-hybrid systems. Nucleic Acids Res 27:919–929

    Article  PubMed  CAS  Google Scholar 

  63. (1995) In fusion cloning-infinite possibilities. Matchmaker one-hybrid system. Clontech. www.danyel.co.il/fileserver.php?file=168. Accessed 26 August, 2011

  64. Alexander MK, Bourns BD, Zakian VA (2001) One-hybrid systems for detecting protein–DNA interactions. Methods Mol Biol 177:241–259

    PubMed  CAS  Google Scholar 

  65. Vidal M, Brachmann RK, Fattaey A, Harlow E, Boeke JD (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein–protein and DNA–protein interaction. Proc Natl Acad Sci 93:10315–10320

    Article  PubMed  CAS  Google Scholar 

  66. Isalan M, Choo Y (2001) Engineering nucleic acid-binding proteins by phage display. Methods Mol Biol 148:417–429

    PubMed  CAS  Google Scholar 

  67. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  PubMed  CAS  Google Scholar 

  68. Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673

    Article  PubMed  CAS  Google Scholar 

  69. Jamieson AC, Kim S, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695

    Article  PubMed  CAS  Google Scholar 

  70. Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci 91:11163–11167

    Article  PubMed  CAS  Google Scholar 

  71. Wu H, Yang WP, Barbas CF (1995) Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci 92:344–348

    Article  PubMed  CAS  Google Scholar 

  72. Rebar EJ, Greisman HA, Pabo CO (1996) Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. In: Abelson JN (ed) Combinatorial chemistry, 8th edn. Academic Press, San Diego, pp 129–149

    Google Scholar 

  73. Choo Y, Klug A (1995) Designing DNA-binding proteins on the surface of filamentous phage. Cur Opin Biotechnol 6:431–436

    Article  CAS  Google Scholar 

  74. Gustafsdottir SM, Schlingemann J, Iglesias AR, Edith et al (2007) In vitro analysis of DNA–protein interactions by proximity ligation. Proc Natl Acad Sci 104:3067–3072

    Article  PubMed  CAS  Google Scholar 

  75. Jarvius M, Landegren U, Söderberg O et al (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6:1500–1509

    Article  PubMed  CAS  Google Scholar 

  76. SO Landegren U et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  CAS  Google Scholar 

  77. Kim TH, Ren B (2006) Genome-wide analysis of protein–DNA interactions. Annu Rev Genom Hum G 7:81–102

    Article  CAS  Google Scholar 

  78. Krieg AJ, Hammond EM, Giaccia AJ (2006) Functional analysis of p53 binding under differential stresses. Mol Cell Biol 26:7030–7045

    Article  PubMed  CAS  Google Scholar 

  79. Mayanil CS, Pool A, Nakazaki H et al (2006) Regulation of murine TGFβ2 by Pax3 during early embryonic development. J Biol Chem 281:24544–24552

    Article  PubMed  CAS  Google Scholar 

  80. Kajiyama Y, Tian J, Locker J (2006) Characterization of distant enhancers and promoters in the albumin-α-fetoprotein locus during active and silenced expression. J Biol Chem 281:30122–30131

    Article  PubMed  CAS  Google Scholar 

  81. Hanlon SE, Lieb JD (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 14:697–705

    Article  PubMed  CAS  Google Scholar 

  82. Sikder D, Kodadek T (2005) Genomic studies of transcription factor-DNA interactions. Curr Opin Chem Biol 9:38–45

    Article  PubMed  CAS  Google Scholar 

  83. Loh YH, Wu Q, Chew JL et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  PubMed  CAS  Google Scholar 

  84. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  85. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant methods 3:11

    Article  PubMed  CAS  Google Scholar 

  86. Spencer V (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31:67–75

    Article  PubMed  CAS  Google Scholar 

  87. Partha DM, Ramachandran K (2004) Chromatin immunoprecipitation assay. Biotechniques 37:961–969

    Google Scholar 

  88. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694–698

    Article  PubMed  CAS  Google Scholar 

  89. Promega Protein Interaction Guide (2011) Chromatin immunoprecipitation. Chapter 6: 20–23. http://www.promega.com/resources/product-guides-and-selectors/protein-interaction-guide/. Accessed 26 Aug 2011

  90. Bannister A, Abcam Chromatin Team (2011) Chip tips. http://www.abcam.com/index.html?rid=310. Accessed 26 Aug 2011

  91. Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107:30–39

    Article  PubMed  CAS  Google Scholar 

  92. Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82

    Article  CAS  Google Scholar 

  93. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2

    Article  PubMed  CAS  Google Scholar 

  94. Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835–841

    Article  CAS  Google Scholar 

  95. Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36:e17

    Article  PubMed  CAS  Google Scholar 

  96. Peluso P, Wilson DS, Do D, Tran H et al (2003) Optimizing anti-body immobilization strategies for the construction of protein microarrays. Anal Biochem 312:113–124

    Article  PubMed  CAS  Google Scholar 

  97. Zheng M, Barrera LO, Ren B, Wu YN (2007) ChIP–chip: data, model, and analysis. Biometrics 63:787–796

    Article  PubMed  CAS  Google Scholar 

  98. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH (2008) An integrated software system for analyzing ChIP–chip and ChIP-seq data. Nat Biotechnol 26:1293–1300

    Article  PubMed  CAS  Google Scholar 

  99. Johnson WE, Li W, Meyer CA, Gottard R, Carroll JS, Brown M, Liu XS (2006) Model-based analysis of tiling-arrays for ChIP–chip. Proc Natl Acad Sci 103:12457–12462

    Article  PubMed  CAS  Google Scholar 

  100. Gilchrist DA, Fargo DC, Adelman K (2009) Using ChIP–chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48:398–408

    Article  PubMed  CAS  Google Scholar 

  101. Liu X, Noll DM, Lieb JD, Clarke ND (2005) DIP–chip: rapid and accurate determination of DNA-binding specificity. Genome Res 15:421–427

    Article  PubMed  CAS  Google Scholar 

  102. Zhang Y, Liu T, Meyer CA, Eeckhoute J et al (2008) Model-based analysis of ChIP-seq (MACS). Genome Biol 9:R137

    Article  PubMed  CAS  Google Scholar 

  103. Barski A, Zhao K (2009) Genomic location analysis by ChIP-seq. J Cell Biochem 107:11–18

    Article  PubMed  CAS  Google Scholar 

  104. Liu ET, Pott S, Huss M (2010) Q&A: ChIP-seq technologies and the study of gene regulation. BMC Biol 8:56

    Article  PubMed  CAS  Google Scholar 

  105. Barski A, Frenkel B (2004) ChIP display: novel method for identification of genomic targets of transcription factors. Nucleic Acids Res 32:12

    Article  CAS  Google Scholar 

  106. Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032–1045

    Article  PubMed  CAS  Google Scholar 

  107. Dahl JA, Collas P (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem cells 25:1037–1046

    Article  PubMed  CAS  Google Scholar 

  108. Greil F, Moorman C, Steensel BV (2006) DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase. Method Enzymol 410:342–359

    Article  CAS  Google Scholar 

  109. Abed M, Kenyagin-Karsenti D, Boico O, Orian A (2009) DamID: a methylation-based chromatin profiling approach chromatin immunoprecipitation assays. Methods Mol Biol 567:155–169

    Article  PubMed  CAS  Google Scholar 

  110. Orian A (2006) Chromatin profiling, DamID and the emerging landscape of gene expression. Curr Opin Genet Dev 16:157–164

    Article  PubMed  CAS  Google Scholar 

  111. Gavrilov A, Eivazova E, Pirozhkova I, Lipinski M, Razin S, Vassetzky Y (2009) Chromosome conformation capture (from 3C to 5C) and Its ChIP-based modification chromatin immunoprecipitation assays. Methods Mol Biol 567:171–188

    Article  PubMed  CAS  Google Scholar 

  112. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  PubMed  CAS  Google Scholar 

  113. Simonis M, Kooren J, Laat WD (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4:895

    Article  PubMed  CAS  Google Scholar 

  114. Matys V, Fricke E, Geffers R, Gößling E et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:374–378

    Article  PubMed  CAS  Google Scholar 

  115. Wingender E, Chen X, Fricke E, Geffers R et al (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29:281–283

    Article  PubMed  CAS  Google Scholar 

  116. Nimrod G, Schushan M, Szilágyi A, Leslie C, Ben-Tal N (2010) iDBPs: a web server for the identification of DNA binding proteins. Bioinformatics 26:692–693

    Article  PubMed  CAS  Google Scholar 

  117. Tjong H, Zhou H-X (2007) DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces. Nucleic Acids Res 35:1465–1477

    Article  PubMed  CAS  Google Scholar 

  118. Zhu LJ, Christensen RG, Kazemian M et al (2011) FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res 39:D111–D117

    Article  PubMed  Google Scholar 

  119. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–D451

    Article  PubMed  CAS  Google Scholar 

  120. Marinescu VD, Kohane IS, Riva A (2005) MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 6:79

    Article  PubMed  CAS  Google Scholar 

  121. Cho SY, Chung M, Park M, Park S, Lee YS (2008) ZIFIBI: prediction of DNA binding sites for zinc finger proteins. Biochem Biophys Res Commun 369:845–848

    Article  PubMed  CAS  Google Scholar 

  122. Liu X, Brutlag DL, Liu JS (2001) Bioprospector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 6:127–138

    Google Scholar 

  123. Wang L, Brown SJ (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34:W243–W248

    Article  PubMed  CAS  Google Scholar 

  124. Wang L, Huang C, Yang MQ, Yang JY (2010) BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 4:S3

    Article  PubMed  CAS  Google Scholar 

  125. Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23:634–636

    Article  PubMed  CAS  Google Scholar 

  126. Tsuchiya Y, Kinoshita K, Nakamura H (2004) PreDs: a server for predicting dsDNA-binding site on protein molecular surfaces. Bioinformatics 21:1721–1723

    Article  PubMed  CAS  Google Scholar 

  127. Prabakaran P, An J, Gromiha MM, Selvaraj S, Uedaira H, Kono H, Sarai A (2001) Thermodynamic database for protein–nucleic acid interactions (ProNIT). Bioinformatics 17:1027–1034

    Article  PubMed  CAS  Google Scholar 

  128. Fang J, Dong Y, Salamat-Miller N, Middaugh CR (2008) DB-PABP: a database of polyanion-binding proteins. Nucleic Acids Res 36:D303–D306

    Article  PubMed  CAS  Google Scholar 

  129. Kumar KK, Pugalenthi G, Suganthan PN (2009) DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. J Biomol Struct Dyn 26:679–686

    PubMed  CAS  Google Scholar 

  130. Holler FJ, Skoog DA, Crouch SR (2006) Principles of instrumental analysis. Thomas Brooks/Cole, Belmont, CA

    Google Scholar 

  131. Fisher WG, Partridge WP Jr, Dees C, Wachter EA (1997) Simultaneous two-photon activation of type-I photodynamic therapy agents. Photochem Photobiol 66:141–155

    Article  PubMed  CAS  Google Scholar 

  132. Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci 96:13756–13761

    Article  PubMed  CAS  Google Scholar 

  133. Pereira M, Lai EPC (2008) Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. J Nanobiotechnol 6:10

    Article  CAS  Google Scholar 

  134. Thompson NL, Lieto AM, Allen NW (2002) Recent advances in fluorescence correlation spectroscopy. Curr Opin Struct Biol 12:634–641

    Article  PubMed  Google Scholar 

  135. Wan QH, Le XC (1999) Fluorescence polarization studies of affinity interactions in capillary electrophoresis. Anal Chem 71:4183–4189

    Article  PubMed  CAS  Google Scholar 

  136. Wang Z, Lu M, Wang X, Yin R, Song Y, Le XC, Wang H (2009) Quantum dots enhanced ultrasensitive detection of DNA adducts. Anal Chem 81:10285–10289

    Article  PubMed  CAS  Google Scholar 

  137. Wan QH, Le XC (1999) Capillary electrophoresis coupled with laser-induced fluorescence polarization as a hybrid approach to ultrasensitive immunoassays. J Chromatogr A 853:555–562

    Article  PubMed  CAS  Google Scholar 

  138. Cross AJ, Fleming GR (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys J 46:45–56

    Article  PubMed  CAS  Google Scholar 

  139. Broos J, Visser AJWG, Engbersen JFJ, Verboom W, Vanhoek A, Reinhoudt DN (1995) Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flex. J Am Chem Soc 117:12657–12663

    Article  CAS  Google Scholar 

  140. Cook J, Holtom G (1990) Detection of protein–DNA complex formation by time-resolved fluorescence depolarization of bound ethidium bromide. Anal Biochem 190:331–339

    Article  PubMed  CAS  Google Scholar 

  141. Hirao I, Yoshizawa S, Miura K (1991) Gel electrophoresis using a fluorescence agent for analysis and purification of non-labeled synthetic DNA fragments. Nucleic Acids Res 19:4003

    Article  PubMed  CAS  Google Scholar 

  142. Forwood JK, Jans DA (2006) Quantitative analysis of DNA–protein interactions using double-labeled native gel electrophoresis and fluorescence-based imaging. Electrophoresis 27:3166–3170

    Article  PubMed  CAS  Google Scholar 

  143. Dupuy L, Gauthier C, Durand G, Musnier A, Heitzler D, Herledan A, Sakanyan V, Crépieux P, Reiter E (2009) A highly sensitive near-infrared fluorescent detection method to analyze signalling pathways by reverse-phase protein array. Proteomics 9:5446–5454

    Article  PubMed  CAS  Google Scholar 

  144. Snapyan M, Lecocq M, Guével L, Arnaud MC, Ghochikyan A, Sakanyan V (2003) Dissecting DNA–protein and protein–protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics 3:647–657

    Article  PubMed  CAS  Google Scholar 

  145. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  PubMed  CAS  Google Scholar 

  146. Blouin S, Craggs TD, Lafontaine DA, Penedo JC (2009) Functional studies of DNA–protein interactions using FRET techniques. Methods Mol Biol 543:475–502

    Article  PubMed  CAS  Google Scholar 

  147. Elliott G, O’Hare P (1999) Intercellular trafficking of VP22-GFP fusion proteins. Gene Ther 6:149–151

    Article  PubMed  CAS  Google Scholar 

  148. Chang CW, Sud D, Mycek MA (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495–524

    Article  PubMed  CAS  Google Scholar 

  149. Cremazy FGE, Manders EMM, Bastiaens PIH et al (2005) Imaging in situ protein–DNA interactions in the cell nucleus using FRET–FLIM. Exp Cell Res 309:390–396

    Article  PubMed  CAS  Google Scholar 

  150. Russu IM (1991) Studying DNA–protein interactions using NMR. Trends Biotechnol 9:96–104

    Article  PubMed  CAS  Google Scholar 

  151. Campagne S, Gervais V, Milon A (2011) Nuclear magnetic resonance analysis of protein–DNA interactions. J R Soc Interf 8:1065–1078

    Article  CAS  Google Scholar 

  152. Shindoa H, Ohnukia A, Ginbaa H, Katohb E, Ueguchic C, Mizunoc T, Yamazakib T (1999) Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 455:63–69

    Article  Google Scholar 

  153. Lane AN, Kelly G, Ramos A, Frenkiel TA (2001) Determining binding sites in protein–nucleic acid complexes by cross-saturation. J Biomol NMR 21:127–139

    Article  PubMed  CAS  Google Scholar 

  154. Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  PubMed  CAS  Google Scholar 

  155. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1:349–384

    Article  PubMed  CAS  Google Scholar 

  156. Bishop GR, Chaires JB (2003) Characterization of DNA structures by circular dichroism. In: Herdewijn P, Matusda A, Sanghvi YS, Egli M (eds) Current protocols in nucleic acid chemistry. Wiley-Liss Inc., New York

    Google Scholar 

  157. Martin SR, Schilstra MJ (2008) Circular dichroism and its application to the study of biomolecules. Methods Cell Biol 84:263–293

    Article  PubMed  CAS  Google Scholar 

  158. Pouplana LRD, Atrian S, Duarte RG, Gilmore LAF, Kelly SM, Price NC (1991) Structural properties of long- and short-chain alcohol dehydrogenases. Contribution of NAD+ to stability. Biochem J 276:433–438

    Google Scholar 

  159. Binnig G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 6:930–933

    Article  Google Scholar 

  160. Francis LW, Lewis PD, Wright CJ, Conlan RS (2010) Atomic force microscopy comes of age. Biol Cell 102:133–143

    CAS  Google Scholar 

  161. Lyubchenko YL, Shlyakhtenko LS, Gall AA (2009) Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol Biol 543:337–351

    Article  PubMed  CAS  Google Scholar 

  162. Shlyakhtenko LS, Gall AA, Weimer JJ, Hawn DD, Lyubchenko YL (1999) Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys J 77:568–576

    Article  PubMed  CAS  Google Scholar 

  163. Lysetska M, Knoll A, Boehringer D, Hey T, Krauss G, Krausch G (2002) UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study. Nucleic Acids Res 30:2686–2691

    Article  PubMed  CAS  Google Scholar 

  164. Majka J, Speck C (2007) Analysis of protein–DNA interactions using surface plasmon resonance. Adv Biochem Eng Biotechnol 104:13–36

    PubMed  CAS  Google Scholar 

  165. Nguyen B, Tanious FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods 42:150–161

    Article  PubMed  CAS  Google Scholar 

  166. Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein–DNA interactions with surface plasmon resonance imaging. J American Chem Soc 121:8044–8051

    Article  CAS  Google Scholar 

  167. Lopez MM, Makhatadze GI (2002) Differential scanning calorimetry. Methods Mol Biol 173:113–119

    PubMed  CAS  Google Scholar 

  168. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    Article  PubMed  CAS  Google Scholar 

  169. Ababou A, Ladbury JE (2007) Survey of the year 2005: literature on applications of isothermal titration calorimetry. J Mol Recognit 20:4–14

    Article  PubMed  CAS  Google Scholar 

  170. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the research grant awarded to Dr. Vibha Rani by the Department of Science and Technology, Government of India (SR/FT/LS-006/2009: Sept 4, 2009). We acknowledge Jaypee Institute of Information Technology, Deemed to be University for providing the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani.

Additional information

All the authors have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, B., Thukral, S., Krishnan, S. et al. DNA–protein interactions: methods for detection and analysis. Mol Cell Biochem 365, 279–299 (2012). https://doi.org/10.1007/s11010-012-1269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1269-z

Keywords

Navigation