Skip to main content

Introduction

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 138 Accesses

Abstract

You should know about ice that may melt under sunlight and changes to water. The water can further change to vapor by heating. They form three common states of mater around the world, that is, the solid, liquid and gas. Nevertheless, do you know what may happen when a gas is further heated to an extremely high temperature such as that in the sun? Science tells us that the gas there will not be stable any more but immediately collapse. The electrons escape from the atomic orbits to become free, leaving behind the bare atoms as positively charged particles. The sun is thus full of negatively charged electrons and positively charged ions but they exist as a spherical whole. That is called plasma, the fourth state of matter, in addition to the solid, liquid and gaseous states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sturrock PA (1994) Plasma physics: an introduction to the theory of astrophysical. Geophysical and laboratory plasmas. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Hazeltine RD, Waelbroeck FL (2004) The framework of plasma physics. Westview Press, Boulder

    Google Scholar 

  3. Chen FF (2006) Introduction to plasma physics and controlled fusion. Springer, New York

    Google Scholar 

  4. Crookes W (1879) On radiant matter; a lecture delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879. Am J Sci 318(106):241–262

    Article  Google Scholar 

  5. Preston S (1881) On some points relating to the dynamics of “Radiant Matter.” Nature 23:461–464. https://doi.org/10.1038/023461a0

    Article  Google Scholar 

  6. Thomson JJXL (1897) Cathode Rays. London Edinburgh Dublin Philos Mag J Sci 44:293–316. https://doi.org/10.1080/14786449708621070

    Article  Google Scholar 

  7. Langmuir I (1928) Oscillations in ionized gases. PNAS 14:627–637. https://doi.org/10.1073/pnas.14.8.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldston RJ, Rutherford PH (1995) Introduction to plasma physics. Taylor & Francis, New York, pp 1–2

    Book  Google Scholar 

  9. Pines D, Bohm D (1952) A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys Rev 85:338–353

    Article  CAS  Google Scholar 

  10. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  CAS  Google Scholar 

  11. Bohm D, Pines D (1953) A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys Rev 92:609–625. https://doi.org/10.1103/physrev.92.609

    Article  CAS  Google Scholar 

  12. Stern EA, Ferrell RA (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120:130–136

    Article  Google Scholar 

  13. Zeng S, Yu X, Law W-C, Zhang Y, Hu R, Dinh X-Q, Ho H-P, Yong K-T (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens Actuat B Chem 176:1128–1133. https://doi.org/10.1016/j.snb.2012.09.073

    Article  CAS  Google Scholar 

  14. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York

    Book  Google Scholar 

  15. Harsh OK, Agarwal BK (1988) Surface plasmon dispersion relation in the X-ray emission spectra of a semi-infinite rectangular metal bounded by a plane. Phys B+C 150:378–384. https://doi.org/10.1016/0378-4363(88)90078-2

    Article  CAS  Google Scholar 

  16. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Mag 4:396–402

    Article  Google Scholar 

  17. Wood RW (1902) A suspected case of the electrical resonance of minute metal particles for light-waves. A new type of absorption. Proc Phys Soc Lond 18:1478

    Google Scholar 

  18. Chen CY, Chang CC, Yu C, Lin CW (2012) Clinical application of surface plasmon resonance-based biosensors for fetal fibronectin detection. Sensors 12:3879–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85. https://doi.org/10.1038/nature11253

    Article  CAS  PubMed  Google Scholar 

  20. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399. https://doi.org/10.1038/nphoton.2013.57

    Article  CAS  Google Scholar 

  21. Maxwell-Garnett JC (1904) Colors in metal glasses and in metallic film. Philos Trans R Soc London 203:385–420

    Article  Google Scholar 

  22. Drude P (1900) Zur Elektronentheorie der metalle. Ann Phys 306(3):566–613. https://doi.org/10.1002/andp.19003060312

    Article  Google Scholar 

  23. Rayleight L (1907) Note on the remarkable case of diffraction spectra described by Prof. Wood. Phil Mag 14:60–65

    Article  Google Scholar 

  24. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–455

    Article  CAS  Google Scholar 

  25. Fano U (1941) The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J Opt Soc Am 31:213–222

    Article  Google Scholar 

  26. Sommerfeld A (1899) Über die Fortpflanzung elektrodynamischer Wellen an längs eines Drahtes. Ann der Physik und Chemie 302(2):233–290

    Article  Google Scholar 

  27. Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann der Physik 23:846–866

    Article  Google Scholar 

  28. Pines D (1956) Collective energy losses in solid. Rev Mod Phys 28:184–198

    Article  CAS  Google Scholar 

  29. Fano U (1956) Atomic theory of electromagnetic interactions in dense materials. Phys Rev 103:1202–1218

    Article  CAS  Google Scholar 

  30. Powell CJ, Swan JB (1959) Origin of the characteristic electron energy losses in aluminum. Phys Rev 115:869–875

    Article  CAS  Google Scholar 

  31. Powell CJ, Swan JB (1960) Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys Rev 118:640–643

    Article  CAS  Google Scholar 

  32. Ritchie RH, Arakawa ET, Cowan JJ, Hamm RH (1968) Surface-plasmaon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1532

    Article  CAS  Google Scholar 

  33. Kreibig U, Zacharias P (1970) Surface plasma resonances in small spherical silver and gold particles. Z Phys 231:128–143

    Article  CAS  Google Scholar 

  34. Cunningham SL, Maradudin AA, Wallis RF (1974) Effect of a charge layer on the surface-plasmon-polarization dispersion curve. Phys Rev B 10:3342–3355

    Article  CAS  Google Scholar 

  35. Fleschmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  36. Zia R, Schuller JA, Brongers ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  37. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A Hadrons Nucl 216:398–410

    Article  CAS  Google Scholar 

  38. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturf 23A:2135–2136

    Article  Google Scholar 

  39. Kretschmann E (1971) Die bestimmung optischer konstanten von metallen durch anregung von oberfliichenplasmaschwingungen. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  40. Owen V (1997) Real-time optical immunosensors-A commercial reality. Biosens Bioelect 12:i–ii

    Article  Google Scholar 

  41. Gordon JG II, Swalen JD (1977) The effect of thin organic films on the surface plasma resonance on gold. Opt Commun 22(3):374–376

    Article  CAS  Google Scholar 

  42. Gordon JG II, Ernst S (1980) Surface plasmons as a probe of the electrochemical interface. Surf Sci 101(1–3):499–506

    Google Scholar 

  43. Nylander C, Liedberg B, Lind T (1982–1983) Gas detection by means of surface plasmon resonance. Sens Actuat 3:79–88

    Google Scholar 

  44. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuat 4:299–304

    Article  CAS  Google Scholar 

  45. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920

    Article  CAS  PubMed  Google Scholar 

  47. Toma K, Vala M, Adam P, Homola J, Knoll W, Dostálek J (2013) Compact surface plasmon-enhanced fluorescence biochip. Opt Express 21:10121–10132

    Article  CAS  PubMed  Google Scholar 

  48. Bao W, Staffaroni M, Bokor J, Salmeron MB, Yablonovitch E, Cabrini S, Bargioni AW, Schuck PJ (2013) Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Opt Exp 21:8166–8176

    Article  Google Scholar 

  49. Yeatman E, Ash EA (1987) Surface plasmon microscopy. Elect Lett 23:1091–1092

    Article  Google Scholar 

  50. Rothenhäuslar B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  51. Roberta DA, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584

    Article  Google Scholar 

  52. Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77:3904–3907

    Article  CAS  PubMed  Google Scholar 

  53. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930

    Article  CAS  Google Scholar 

  54. Quail JC, Rako JG, Simon HJ (1983) Long-range surface-plasmon modes in silver and aluminum films. Opt Lett 8:377–379

    Article  CAS  PubMed  Google Scholar 

  55. Matsubara K, Kawata S, Minami S (1990) Multilayer system for a high-precision surface plasmon resonance sensor. Opt Lett 15:75–77. https://doi.org/10.1364/OL.15.000075

    Article  CAS  PubMed  Google Scholar 

  56. Yang F, Bradberry GW, Sambles JR (1991) Long-range surface mode supported by very thin silver films. Phys Rev Lett 66:2030–2032

    Article  CAS  PubMed  Google Scholar 

  57. Kessler MA, Hall EAH (1996) Multilayered structures exhibiting long-range surface exciton resonance. Thin Solid Films 272:161–169

    Article  CAS  Google Scholar 

  58. Lyndin NM, Salakhutdinov IF, Sychugov VA, Usievich BA, Pudonin FA, Parriaux O (1999) Long-range surface plasmons in asymmetric layered metal-dielectric structures. Sens Actuat B 54:37–42

    Article  CAS  Google Scholar 

  59. Shumaker-Parry JS, Campbell CT (2004) Quantitative methods for spatially resolved adsorption/ desorption measurements in real time by surface plasmon resonance microscopy. Anal Chem 76:907–917

    Article  CAS  PubMed  Google Scholar 

  60. Johansen K (2005) Imaging SPR apparatus. U.S. patent 6862094, March 1, 2005

    Google Scholar 

  61. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  62. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Introduction. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_1

Download citation

Publish with us

Policies and ethics