Skip to main content

Preparation of Radionuclides

  • Chapter
  • First Online:
Nuclear Science and Technology

Part of the book series: Nuclear Science and Technology ((NST))

  • 230 Accesses

Abstract

Radionuclides include natural radionuclides and artificial radionuclides. Artificial radionuclides are widely used because they have easily controlled radiation intensity and can be made into radioactive sources of various required shapes, with usually short half-lives (easy disposal of radioactive waste). Artificial radionuclides are mainly produced by reactors and accelerators, and generators made from radionuclides produced by the above two methods can be used to obtain short-lived radionuclides. Reactors can produce various radionuclides in large quantities with relatively low production costs. Producing radionuclides by accelerators has a much smaller production capacity compared with that by reactors, but the radionuclides produced are mostly carrier-free with high specific activity and more varieties. In the process of producing radionuclides, a large amount of radioactive waste is usually generated. Optimizing the production process to reduce the generation of radioactive waste and controlling and properly disposing of radioactive waste to avoid greater harm to the environment are important technical problems to be solved in radionuclide production. Therefore, advanced radionuclide production technologies, perfect radionuclide production processes, and efficient three-waste treatment technologies are currently the focus of attention in the fields of radionuclide research, production, and application. This chapter will focus on the preparation of artificial radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Cheng, W. L., Lee, C. S., Chen, C. C., Wang, Y. M., & Ting, G. (1989). Study on the separation of molybdenum-99 and recycling of uranium to water boiler reactor. International Journal of Radiation Applications and Instrumentation. Part, 40(4), 315–324. https://doi.org/10.1016/0883-2889(89)90224-4

  • Chuvilin, D. Y., Khvostionov, V. E., Markovskij, D. V., Pavshook, V. A., Ponomarev-Stepnoy, N. N., Udovenko, A. N., & Tome, L. A. (2007). Production of 89Sr in solution reactor. Applied Radiation and Isotopes, 65(10), 1087–1094. https://doi.org/10.1016/j.apradiso.2007.05.002

    Article  Google Scholar 

  • Cocalia, V. A., Holbrey, J. D., Gutowski, K. E., Bridges, N. J., & Rogers, R. D. (2006). Separations of metal ions using ionic liquids: The challenges of multiple mechanisms. Tsinghua Science and Technology, 11(2), 188–193. https://doi.org/10.1016/S1007-0214(06)70174-2

    Article  Google Scholar 

  • Dasso, C. H., Pollarolo, G., & Winther, A. (1994). Systematics of isotope production with radioactive beams. Physical Review Letters, 73(14), 1907–1910.

    Article  ADS  Google Scholar 

  • Favaretto, C., Talip, Z., Borgna, F., Grundler, P. V., Dellepiane, G., Sommerhalder, A., Zhang, H., Schibli, R., Braccini, S., Müller, C., & Meulen, N. P. (2021). Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharmacy and Chemistry, 6(1), 37.

    Article  Google Scholar 

  • Fiaccabrino, D. E., Kunz, P., & Radchenko, V. (2021). Potential for production of medical radionuclides with on-line isotope separation at the ISAC facility at TRIUMF and particular discussion of the examples of 165Er and 155Tb. Nuclear Medicine and Biology, 94–95, 81–91.

    Article  Google Scholar 

  • Glenn, D., Heger, A. S., & Hladik, W. B. (1997). Comparison of characteristics of solution and conventional reactors for 99Mo production. Nuclear Technology. https://doi.org/10.13182/NT97-A35374

  • Heitzman, H., Young, B. A., Rausch, D. J., Rickert, P., Stepinski, D. C., & Dietz, M. L. (2006). Fluorous ionic liquids as solvents for the liquid-liquid extraction of metal ions by macrocyclic polyethers. In Talanta (Vol. 69, pp. 527–531). Elsevier. https://doi.org/10.1016/j.talanta.2005.09.046

  • International Atomic Energy Agency. (1998). Management of radioactive waste from 99Mo Production.

    Google Scholar 

  • International Atomic Energy Agency. (2003). Manual for reactor produced radioisotopes.

    Google Scholar 

  • International Atomic Energy Agency. (2021a). Production of emerging radionuclides towards theranostic applications: Copper-61, Scandium-43 and -44, and Yttrium-86.

    Google Scholar 

  • International Atomic Energy Agency. (2021b). Therapeutic Radiopharmaceuticals Labelled with Copper-67, Rhenium-186 and Scandium-47.

    Google Scholar 

  • Knapp, F. F., & Dash, A. (2016). Reactor-produced therapeutic radionuclides. In F. F. Knapp & A. Dash (Eds.), Radiopharmaceuticals for therapy (pp. 71–113). Springer.

    Google Scholar 

  • Knust, E. J., Dutschka, K., & Weinreich, R. (2000). Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Applied Radiation and Isotopes, 52(2), 181–184. https://doi.org/10.1016/S0969-8043(99)00127-X

    Article  Google Scholar 

  • Legeai, S., Diliberto, S., Stein, N., Boulanger, C., Estager, J., Papaiconomou, N., & Draye, M. (2008). Room-temperature ionic liquid for lanthanum electrodeposition. Electrochemistry Communications, 10(11), 1661–1664. https://doi.org/10.1016/j.elecom.2008.08.005

    Article  Google Scholar 

  • Lepera, C. G., & Wong, W.-H. (2004). Production of isotopes. In E. E. Kim, M.-C. Lee, T. Inoue, & W. H. Wong (Eds.), Clinical PET: Principles and applications (pp. 31–43). Springer.

    Google Scholar 

  • Luo, H., Dai, S., Bonnesen, P. V., & Buchanan, A. C. (2006). Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an AZA-crown ether fragment. Journal of Alloys and Compounds, 418(1–2), 195–199. https://doi.org/10.1016/j.jallcom.2005.10.054

    Article  Google Scholar 

  • Mushtaq, A. (2012). Producing radioisotopes in power reactors. Journal of Radioanalytical and Nuclear Chemistry, 292(2), 793–802.

    Article  Google Scholar 

  • Ruth, T. J. (2013). Accelerator production of medical radionuclides: A review. Nuclear Physics News, 23(2), 30–33.

    Article  ADS  Google Scholar 

  • Saha, G. B. (2018). Production of radionuclides. In G. B. Saha (Ed.), Fundamentals of nuclear pharmacy (pp. 49–75). Springer International Publishing.

    Chapter  Google Scholar 

  • Welch, M. J., & Redvanly, C. S. (2005). Handbook of radiopharmaceuticals: Radiochemistry and applications. Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Harbin Engineering University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, S. (2023). Preparation of Radionuclides. In: Nuclear Science and Technology. Nuclear Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3087-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3087-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3086-9

  • Online ISBN: 978-981-99-3087-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics