Skip to main content

Rice Straw Biomass and Agricultural Residues as Strategic Bioenergy: Effects on the Environment and Economy Path with New Directions

  • Chapter
  • First Online:
Bioenergy

Abstract

Bioenergy is energy produced from organic material of plant and animal sources, mainly agricultural residues, wood, energy crops, and organic wastes. Bioenergy is the most common renewable energy source globally, accounting for roughly 70% of all critical renewable energy sources. Since biomass is organic, it is one of the most dependable energy sources. Traditional biomass is used by about 2.5 billion people worldwide and about 1.3 million public, specifically children and women, every year prematurely die. Biological resources are agricultural residues, industrial waste, municipal solid waste, and terrestrial and aquatic crops grown only for energy purposes. Agricultural residues are an essential energy source, and rice is a chief crop in several emerging countries, especially Asia. Rice bran and rice straw, which are remnants of this crop, have a high potential for bioenergy production. The source of bioenergy is rice grass, lignocellulosic biomass, lignin, cellulose, and hemicellulose. Rice straw is also used to generate electricity; the fundamental method is a thermochemical one that generates steam via direct combustion of biomaterials. This form, however, is highly undesirable due to the detrimental effects on the environment caused by the release of carbon dioxide and methane gas. Consequently, it is imperative to progress a method of extracting energy from rice straw to generate electricity. It is an excellent approach to dispose of rice straw and uses heat is helpful for power generation. Eventually, rice straw can be used in high-efficiency, energy production, and affordable agro-biometry to generate electricity and evaluate bioenergy and its impacts in the sense of the particular framework of which it is a part, as well as their direct and broader impacts on the environment and economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abendroth C, Latorre-Pérez A, Porcar M, Simeonov C, Luschnig O, Vilanova C, Pascual J (2020) Shedding light on biogas: phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Syst Appl Microbiol 43:126024

    Article  CAS  PubMed  Google Scholar 

  • Al-Haj Ibrahim H (2018) Bio-energy production from rice straw a review. Recent Adv Petrochem Sci 5:555671

    Google Scholar 

  • Ashoor S, Sukumaran RK (2020) Mild alkaline pre-treatment can achieve high hydrolytic and fermentation efficiencies for rice straw conversion to bioethanol. Prep Biochem Biotechnol 50:814–819

    Article  CAS  PubMed  Google Scholar 

  • Bajaj P, Mahajan R (2019) Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103:8711–8724

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63

    Article  CAS  PubMed  Google Scholar 

  • Chandra O, Chaubey K (2017) Volvariella volvacea: a paddy straw mushroom having some therapeutic and health prospective importance. World J Pharm Sci 6:1291–1300

    CAS  Google Scholar 

  • Chen Z, Wang M, Jiang E, Wang D, Zhang K, Ren Y, Jiang Y (2018) Pyrolysis of torrefied biomass. Trends Biotechnol 36:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z, Chen J, Huang J, Li H, Sun S, Liu X, Wu A, Wang B (2020) Profiling of chemical and structural composition of lignocellulosic biomasses in tetraploid rice straw. Polymers (Basel) 12:340

    Article  CAS  PubMed  Google Scholar 

  • De S, Mishra S, Poonguzhali E, Rajesh M, Tamilarasan K (2020) Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis. Int J Biol Macromol 145:795–803

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho JC, Magalhães AI Jr, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR (2020) Microalgal biomass pre-treatment for integrated processing into biofuels, food, and feed. Bioresour Technol 300:122719

    Article  PubMed  Google Scholar 

  • Devkota KP, Sudhir-Yadav KCM, Beebout SJ, Mohapatra BK, Singleton GR, Puskur R (2020) Assessing alternative crop establishment methods with a sustainability lens in rice production systems of Eastern India. J Clean Prod 244:118835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WH, Xie HK, Xu C, Dai Z, Zhang J, Wang LG, Li H (2019) Impacts of one-off fertilization on nitrogen leaching and economic benefits for rice-rape rotation system. Ying Yong Sheng Tai Xue Bao 30:1097–1109

    PubMed  Google Scholar 

  • Farhadi A, Fakhri Y, Kachuei R, Vasseghian Y, Huseyn E, Mousavi Khaneghah A (2021) Prevalence and concentration of fumonisins in cereal-based foods: a global systematic review and meta-analysis study. Environ Sci Pollut Res Int 28:20998–21008

    Article  CAS  PubMed  Google Scholar 

  • Fermanelli CS, Córdoba A, Pierella LB, Saux C (2020) Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: a comparative study. Waste Manag 102:362–370

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization FAO (1981) The state of food and agriculture 1981. United Nations, Rome

    Google Scholar 

  • Food and Agriculture Organization FAO (2020) Cereal supply and demand brief. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Gao S, Huang Z, Feng X, Bian Y, Huang W, Liu Y (2020) Bioconversion of rice straw agro-residues by Lentinula edodes and evaluation of non-volatile taste compounds in mushrooms. Sci Rep 10:1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gursharan S, Shailendra KA (2021) A review on management of rice straw by use of cleaner technologies: abundant opportunities and expectations for Indian farming. J Clean Prod 291:125278

    Article  Google Scholar 

  • Harun S, Geok SK (2016) Effect of sodium hydroxide pretreatment on rice straw composition. Indian J Sci Technol 9:1–9

    Article  CAS  Google Scholar 

  • Hassan A, Salleh AM, Jafferi N (2016) The effects of sodium hydroxide content on mechanical and physical properties of rice straw paper. ARPN J Eng Appl Sci 11:7475–7479

    Google Scholar 

  • Huang W, Yuan H, Li X (2020) Multi-perspective analyses of rice straw modification by Pleurotus ostreatus and effects on biomethane production. Bioresour Technol 296:122365

    Article  CAS  PubMed  Google Scholar 

  • Imam A, Suman SK, Singh R, Vempatapu BP, Ray A, Kanaujia PK (2021) Application of laccase immobilized rice straw biochar for anthracene degradation. Environ Pollut 268:115827

    Article  CAS  PubMed  Google Scholar 

  • International Rice Research Institute (IRRI) (2017) Rice straw. http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-straw

  • Isaza-Perez F, Ramírez-Carmona M, Rendón-Castrillón L, Ocampo-López C (2020) Potential of residual fungal biomass: a review. Environ Sci Pollut Res Int 27:13019–13031

    Article  PubMed  Google Scholar 

  • Ishara J, Kenji GM, Sila DN (2018) Edible mushrooms: new food fortification approach towards food security. LAP Lambert Academic Publishing, Congo. http://www.tropentag.de/2018/abstracts/links/Jackson_yTIhZlpj.pdf

  • Jayabalan L, Abd Halim S, Arridina SS, Teuku MIM (2020) Prospects of using rice straw for power generation: a review. Environ Sci Pollut Res 27:25956–25969

    Article  Google Scholar 

  • Jiang Q, Xing X, Jing Y, Han Y (2020) Preparation of cellulose nanocrystals based on waste paper via different systems. Int J Biol Macromol 149:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Jin W, Dong C, Bai Y, Jin D, Hu Z, Huang Y (2020) Effects of rice straw and rice straw ash on rice growth and alpha-diversity of bacterial community in rare-earth mining soils. Sci Rep 25:10331

    Article  Google Scholar 

  • Jishi Z, Chunduo K, Mengchen Y, Lihua Z (2020) Comparison of calcium oxide and calcium peroxide pre-treatments of wheat straw for improving biohydrogen production. ACS Omega 5:9151–9161

    Article  Google Scholar 

  • Kapoor M, Soam S, Agarwal R, Gupta RP, Tuli DK, Kumar R (2017) Pilot Scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings. Bioresour Technol 224:688–693

    Article  CAS  PubMed  Google Scholar 

  • Kondaveeti S, Pagolu R, Patel SKS, Kumar A, Bisht A, Das D, Kalia VC, Kim IW, Lee JK (2019) Bioelectrochemical detoxification of phenolic compounds during enzymatic pre-treatment of rice straw. J Microbiol Biotechnol 29:1760–1768

    Article  CAS  PubMed  Google Scholar 

  • Kovacic Đ, Rupcic S, Kralik D, Jovicic D, Spajic R, Tisma M (2021) Pulsed electric field: an emerging pre-treatment technology in a biogas production. J Waste Manag 120:467–483

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mishra JS, Rao KK, Mondal S, Hazra KK, Choudhary JS, Hans H, Bhatt BP (2020) Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci Rep 10:11146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng L, Yang L, Leng S, Zhang W, Zhou Y, Peng H, Li H, Hu Y, Jiang S, Li H (2021) A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Sci Total Environ 756:143679

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang HW, Lanfeng H (2018) Pulping and papermaking of non-wood fibers, chap 1. Pulp and paper processing. IntechOpen, pp 3–31

    Google Scholar 

  • Liu J, Luo Y, Guo T, Tang C, Chai X, Zhao W, Bai J, Lin Q (2020) Cost-effective pigment production by Monascus purpureus using rice straw hydrolysate as substrate in submerged fermentation. J Biosci Bioeng 129:229–236

    Article  CAS  PubMed  Google Scholar 

  • Logeswaran J, Shamsuddin AH, Silitonga AS, Mahlia TMI (2020) Prospect of using rice straw for power generation: a review. Environ Sci Pollut Res Int 27:25956–25969

    Article  CAS  PubMed  Google Scholar 

  • Mafei TDT, Neto FSPP, Peixoto G, de Baptista NÁ, Monti R, Masarin F (2020) Extraction and characterization of hemicellulose from eucalyptus by-product: assessment of enzymatic hydrolysis to produce xylooligosaccharides. Appl Biochem Biotechnol 190:197–217

    Article  CAS  PubMed  Google Scholar 

  • Mothe S, Polisetty VR (2021) Review on anaerobic digestion of rice straw for biogas production. Environ Sci Pollut Res Int 28:24455–24469

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Banerjee S, Halder G (2018) Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting. J Adv Res 14:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalubega S, Loum J, Tsuimiire Y (2016) Eco safe handmade paper production from rice straw. IJRR 3:26–30

    Google Scholar 

  • Nandan R, Poonia SP, Singh SS, Nath CP, Kumar V, Malik RK, McDonald A, Hazra KK (2021) Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environ Sci Pollut Res Int 28:246–261

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VH, Maria VM, Reianne Q, Pauline C, Martin G (2020) Life cycle assessment applied in rice production and residue management. In: Sustainable Rice Straw Management. Springer, Berlin, pp 161–174

    Google Scholar 

  • Nunez-Regueiro MM, Siddiqui SF, Fletcher RJ (2021) Effects of bioenergy on biodiversity arising from land-use change and crop type. Conserv Biol 35:77–87

    Article  PubMed  Google Scholar 

  • Pandey A, Dou F, Morgan CLS, Guo J, Deng J, Schwab P (2021) Modeling organically fertilized flooded rice systems and its long-term effects on grain yield and methane emissions. Sci Total Environ 755:142578

    Article  CAS  PubMed  Google Scholar 

  • Reid WV, Ali MK, Christopher B (2020) Field the future of bioenergy. Glob Chang Biol 26:274–286

    Article  PubMed  Google Scholar 

  • Renata MB, Stanislaw B, Anastasija N, Kestutis R (2019) Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability 11:1–18

    Google Scholar 

  • Sabeeh M, Zeshan LR, Maryam A (2020) Effect of alkaline and alkaline-photocatalytic pre-treatment on characteristics and biogas production of rice straw. Bioresour Technol 309:123449

    Article  CAS  PubMed  Google Scholar 

  • Serra-Parareda F, Tarrés Q, Delgado-Aguilar M, Espinach FX, Mutje P, Vilaseca F (2019) Biobased composites from biobased-polyethylene and barley thermomechanical fibers: micromechanics of composites. Materials (Basel) 12:4182

    Article  CAS  PubMed  Google Scholar 

  • Shankar LJ, Saroj D, Charu G, Parmar MS (2017) Crop residue recycling for economic and environmental sustainability: the case of India. Open Agric 2:486–494

    Article  Google Scholar 

  • Shoeb SM, Shoeb S, Munwaroddin M, Quadri SS (2014) A review of biomass energy: Indian scenario. IJRET 6:24–28

    Article  Google Scholar 

  • Singh B, Bala A, Anu A, Kumar V, Singh D (2021) Biochemical properties of cellulolytic and xylanolytic enzymes from Sporotrichum thermophile and their utility in bioethanol production using rice straw. Prep Biochem Biotechnol 19:1–13

    CAS  Google Scholar 

  • Song W, Peng L, Bakhshyar D, He L, Zhang J (2021) Mild O(2)-aided alkaline pre-treatment effectively improves fractionated efficiency and enzymatic digestibility of Napier grass stem towards a sustainable biorefinery. Bioresour Technol 319:124162

    Article  CAS  PubMed  Google Scholar 

  • Suseno N, Adiarto T, Sirfra M, Elvira V (2019) Utilization of rice straw and used paper for the recycle papermaking. IOP Conf Ser Mater Sci Eng 703:012044

    Article  CAS  Google Scholar 

  • Sushil A, Hyungseok N, Jyoti P, Chakraborty K (2018) Conversion of solid wastes to fuels and chemicals through pyrolysis, chap 8. In: Waste Biorefinery Potential and Perspectives. Academic Press Books; Elsevier, pp 239–263

    Google Scholar 

  • Tajmirriahi M, Momayez F, Karimi K (2021) The critical impact of rice straw extractives on biogas and bioethanol production. Bioresour Technol 319:124167

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wang B, Tan F, Li H, Zhang M (2020a) Fine regulation of the starch liquefaction process and its application in the production of citric acid. Int J Biol Macromol 164:2092–2099

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Yang J, Wei H, Hou R, Shi J, Jin Z, Yang F, Hu J, Gao MT (2020b) Reduction of fermentation-associated stresses by straw-based soluble saccharides for enhancing ethanol production. J Agric Food Chem 68:5863–5872

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Dong L, Liu B, Xing D, Zhou C, Wang Q, Wu X, Feng L, Cao G (2020) A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. Environ Res 186:109580

    Article  CAS  PubMed  Google Scholar 

  • Zachary James MG, Søren L, Niclas SB (2021) Understanding the sustainability debate on forest biomass for energy in Europe: a discourse analysis. PLoS ONE 16:0246873

    Google Scholar 

  • Zhang Z, Gao S, Chu C (2020) Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theor Appl Genet 133:1365–1384

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramani Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akshaya, V., Akila, I., Murali, R., Raajasubramanian, D., Kuppan, N., Srinivasan, S. (2023). Rice Straw Biomass and Agricultural Residues as Strategic Bioenergy: Effects on the Environment and Economy Path with New Directions. In: Ramanujam, P.K., Parameswaran, B., Bharathiraja, B., Magesh, A. (eds) Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-3002-9_9

Download citation

Publish with us

Policies and ethics