Skip to main content

Fused Deposition Modeling (FDM) of Pharmaceuticals

  • Chapter
  • First Online:
Additive Manufacturing in Pharmaceuticals

Abstract

A shift in treatment strategy from generalized to personal healthcare has sparked the interest for flexible production techniques capable of producing patient-specific dosage forms. Fused deposition modeling could be utilized for such personalized treatment, and its interest has grown rapidly, with over 350 published papers in the field of pharmaceutical science in the last decade. The advantages of the technique are indeed manifold. Apart from being desktop-sized, FDM has also been praised for its simplicity and cost-effectiveness. The aim of this chapter is to summarize 10 years of research on pharmaceutical FDM 3D-printing in a concise and comprehensive way. Therefore, this chapter first provides information about the FDM 3D-printing equipment and its process mechanism. Next, the typical formulation constituents and specific characterization techniques for the printed dosage forms will be discussed. Finally, a variety of possible pharmaceutical applications like oral therapies, transdermal or transmucosal films and implants will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid M, Koutsamanis I, Corzo C, Maisriemler M, Ocampo AB, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M (2022) Filament-based 3D-printing of placebo dosage forms using brittle lipid-based excipients. Int J Pharm 624(July):1–12

    Google Scholar 

  • Aho J, Boetker JP, Baldursdottir S, Rantanen J (2015) Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm 494(2):623–642

    Article  CAS  PubMed  Google Scholar 

  • Aho J, Bøtker JP, Genina N, Edinger M, Arnfast L, Rantanen J (2019) Roadmap to 3D-printed oral pharmaceutical dosage forms: feedstock filament properties and characterization for fused deposition modeling. J Pharm Sci 108(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Alhijjaj M, Nasereddin J, Belton P, Qi S (2019) Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics 11(633):1–21

    Google Scholar 

  • Antonara L, Dallas PP, Rekkas DM (2022) A novel 3D printing enabled method for fast and reliable construction of polymeric microneedles using experimental design. J Drug Delivery Sci Technol 68(102888):1–11

    Google Scholar 

  • Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP (2022) Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules 27(9)

    Google Scholar 

  • Awad A, Trenfield SJ, Gaisford S, Basit AW (2018) 3D printed medicines: a new branch of digital healthcare. Int J Pharm 548(1):586–596

    Article  CAS  PubMed  Google Scholar 

  • Ayyoubi, S., Cerda, J.R., Fernández-García R, Knief P, Lalatsa A, Healy AM, Serrano DR (2021) 3D printed spherical mini-tablets: geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int J Pharm 597(December 2020):1–15

    Google Scholar 

  • Azad MA, Olawuni D, Kimbell G, Md. Badruddoza AZ, Md. Hossain S, Sultana T (2020) Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials–process perspective. Pharmaceutics 12(2):1–34

    Google Scholar 

  • Azizoğlu E, Özer Ö (2020) Fabrication of Montelukast sodium loaded filaments and 3D printing transdermal patches onto packaging material. Int J Pharm 587(June):119588

    Article  PubMed  Google Scholar 

  • Baldi F, Briatico-vangosa F, Franceschini A, Leonardo P, Milano I (2014) Experimental study of the melt fracture behavior of filled high-density polyethylene melts. Polym Eng Sci 54:364–377

    Article  CAS  Google Scholar 

  • Barnes HA (2003) A review of the rheology of filled viscoelastic systems. Rheol Rev 1:1–36

    Google Scholar 

  • Barrios-Muriel J, Romero-Sánchez F, Alonso-Sánchez FJ, Salgado DR (2020) Advances in orthotic and prosthetic manufacturing: a technology review. Materials 13(2):1–15

    Article  Google Scholar 

  • Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, Basit AW, Gaisford S (2017) 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm 528(1–2):268–279

    Article  CAS  PubMed  Google Scholar 

  • Boniatti J, Januskaite P, da Fonseca LB, Viçosa AL, Amendoeira FC, Tuleu C, Basit AW, Goyanes A, Ré MI (2021) Direct powder extrusion 3d printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations. Pharmaceutics 13(8):1–19

    Article  Google Scholar 

  • Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I (2021) Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J. Control. Release 330(October 2020):821–841

    Article  PubMed  Google Scholar 

  • Carneiro OS, Silva AF, Gomes, R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776

    Article  CAS  Google Scholar 

  • Cerda JR, Arifi T, Ayyoubi S, Knief P, Ballesteros MP, Keeble W, Barbu E, Healy AM, Lalatsa A, Serrano DR (2020) Personalised 3d printed medicines: optimising material properties for successful passive diffusion loading of filaments for fused deposition modelling of solid dosage forms. Pharmaceutics 12(4):1–24

    Article  Google Scholar 

  • Ceretti DVA, Fiorio R, Van Waeleghem T, Desmet A, Florizoone B, Cardon L, D’hooge DR (2022) Exploiting mono- and hybrid nanocomposite materials for fused filament.pdf. J Appl Polym Sci e52922:1–21

    Google Scholar 

  • Chai X, Chai H, Wan X, Yang J, Li J, Zhao Y, Cai W (2017) Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Nat Sci Rep 7(2829):1–9

    Google Scholar 

  • Chamberlain R, Windolf H, Geissler S, Quodbach J (2022) Precise dosing of pramipexole for low-dosed filament production by hot melt extrusion applying various feeding methods. Pharmaceutics 14(216):1–17

    Google Scholar 

  • Chaudhari VS, Malakar TK, Murty US, Banerjee S (2021) Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery. Expert Opin Drug Deliv 18(2):301–313

    Article  CAS  PubMed  Google Scholar 

  • Cicala G, Giordano D, Tosto C, Filippone G, Recca A, Blanco I (2018) Polylactide (PLA) filaments a biobased solution for additive manufacturing: correlating rheology and thermomechanical properties with printing quality. Materials 11(7):1–13

    Article  Google Scholar 

  • Crişan AG, Iurian S, Porfire A, Rus LM, Bogdan C, Casian T, Lucacel RC, Turza A, Porav S, Tomuţă I (2022) QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int J Pharm 613(October 2021):1–20

    Google Scholar 

  • Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909–926

    Article  CAS  PubMed  Google Scholar 

  • Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–529

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira RS, Fantaus SS, Jos A, Melero A, Carlos R, Beck R (2021) 3D-printed products for topical skin applications: from personalized dressings to drug delivery. Pharmaceutics 13(1946):1–39

    Google Scholar 

  • Derakhshandeh H, Aghabglou F, McCarthy A, Mostafavi A, Wiseman C, Bonick Z, Ghanavati I, Harris S, Kreikemeier-Bower C, Masoud S, Rosebohm J, Yang R, Mostafalu P, Orgill D, Tamayol A (2020) A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv Funct Mat 30(1905544)

    Google Scholar 

  • Domínguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Donnelly RF, Larrañeta E (2019) Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics 11(4):5–7

    Article  Google Scholar 

  • Domínguez-Robles J, Utomo E, Cornelius VA, Anjani QK, Korelidou A, Gonzalez Z, Donnelly RF, Margariti A, Delgado-Aguilar M, Tarrés Q, Larrañeta E (2022) TPU-based antiplatelet cardiovascular prostheses prepared using fused deposition modelling. Mat Design 220:1–14

    Google Scholar 

  • Domsta V, Seidlitz A (2021) 3D-printing of drug-eluting implants: an overview of the current developments described in the literature. Molecules 26(4066)

    Google Scholar 

  • Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD (2018) The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci 107(4):1076–1085

    Article  CAS  PubMed  Google Scholar 

  • Elbadawi M (2018). Polymeric additive manufacturing: the necessity and utility of rheology. In: Rivera-Armenta, JL, Cruz, BAS (eds) Polymer Rheology

    Google Scholar 

  • Elbadawi M, Castro BM, Gavins FKH, Ong JJ, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A (2020) M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm 590(August):119837

    Article  CAS  PubMed  Google Scholar 

  • Elbadawi M, Gustaffson T, Gaisford S, Basit AW (2020) 3D printing tablets: predicting printability and drug dissolution from rheological data. Int J Pharm 590(September):119868

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, Vizirianakis IS, Fatouros DG (2020) Fabrication of mucoadhesive buccal films for local Administration of Ketoprofen and Lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. J Pharm Sci 109(9):2757–2766

    Article  CAS  PubMed  Google Scholar 

  • Elkanayati RM, Chambliss WG, Omari S, Almutairi M, Repka MA, Ashour EA (2022) Journal of Drug Delivery Science and Technology Mucoadhesive buccal films for treatment of xerostomia prepared by coupling HME and 3D printing technologies. J Drug Delivery Sci Technol 75(August):103660

    Article  CAS  Google Scholar 

  • Feuerbach T, Thommes M (2021) Design and characterization of a screw extrusion hot-end for fused deposition modeling. Molecules 26(590):1–10

    Google Scholar 

  • Fico D, Rizzo D, Casciaro R, Corcione CE (2022) A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers 14(3):1–33

    Article  Google Scholar 

  • Fu J, Yu X, Jin Y (2018) 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm 539(1–2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Fuenmayor E, Forde M, Healy AV, Devine DM, Lyons JG, McConville C, Major I (2018) Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 10(2):1–27

    Article  Google Scholar 

  • Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N (2016) Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci 90:53–63

    Article  CAS  PubMed  Google Scholar 

  • Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG (2017) 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Delivery Sci Technol 40:164–171

    Article  CAS  Google Scholar 

  • Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, Fatouros DG (2018) A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci 120(January):40–52

    Article  CAS  PubMed  Google Scholar 

  • Gioumouxouzis CI, Karavasili C, Fatouros DG (2019) Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today 24(2):636–643

    Article  CAS  PubMed  Google Scholar 

  • Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, Dourou A, Markopoulou C, Bouropoulos N, Tzetzis D, Fatouros DG (2020) Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci 143(August 2019):105176

    Article  PubMed  Google Scholar 

  • Giri BR, Song ES, Kwon J, Lee J-h, Park J-b (2020) Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics 12(77):1–16

    Google Scholar 

  • Gosselin C, Duballet R, Roux P, Gaudillière N, Dirrenberger J, Morel P (2016) Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders. Mater Des 100:102–109

    Article  Google Scholar 

  • Gottschalk N, Bogdahn M, Harms M, Quodbach J (2021) Brittle polymers in fused deposition modeling: an improved feeding approach to enable the printing of highly drug loaded filament. Int J Pharm 597(120216):1–11

    Google Scholar 

  • Gottschalk N, Quodbach J, Elia AG, Hess F, Bogdahn M (2022) Determination of feed forces to improve process understanding of Fused Deposition Modeling 3D printing and to ensure mass conformity of printed solid oral dosage forms. Int J Pharm 614(September 2021):121416

    Article  PubMed  Google Scholar 

  • Goyanes A, Buanz ABM, Basit AW, Gaisford S (2014) Fused- filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476:88–92

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, Gaisford S, Basit AW (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Wang J, Buanz A, Telford R, Gaisford S, Basit AW (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12:4077–4084

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S (2016) 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 234:41–48

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Allahham N, Tren SJ, Stoyanov E, Gaisford S, Basit AW (2019) Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process. Int J Pharm 567(118471)

    Google Scholar 

  • Gültekin HE, Tort S, Acartürk F (2019) An effective technology for the development of immediate release solid dosage forms containing low-dose drug: fused deposition modeling 3D printing. Pharm Res 36(9):1–13

    Article  Google Scholar 

  • Henry S, Samaro A, Marchesini FH, Shaqour B, Macedo J, Vanhoorne V, Vervaet C (2021a) Extrusion-based 3D printing of oral solid dosage forms: material requirements and equipment dependencies. Int J Pharm 598(December 2020):120361

    Article  Google Scholar 

  • Henry S, De Vadder L, Decorte M, Francia S, Steenkiste MV, Saevels J, Vanhoorne V, Vervaet C (2021b) Development of a 3D-printed dosing platform to aid in zolpidem withdrawal therapy. Pharmaceutics 13(1684):1–24

    Google Scholar 

  • Henry S, De Wever L, Vanhoorne V, De Beer T, Vervaet C (2021c) Influence of print settings on the critical quality attributes of extrusion-based 3D-printed caplets: a quality-by-design approach. Pharmaceutics 13(2068):1–13

    Google Scholar 

  • Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, Sandler N (2016) Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci 105(9):2665–2676

    Article  PubMed  Google Scholar 

  • Ilyés K, Kovács NK, Balogh A, Borbás E, Farkas B, Casian T, Marosi G, Tomuţă I, Kristóf Nagy Z (2019) The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation. Eur J Pharm Sci 129(January):110–123

    Article  PubMed  Google Scholar 

  • Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA (2019) 3D printed oral theophylline doses with innovative ‘radiator-like’ design: impact of polyethylene oxide (PEO) molecular weight. Int J Pharm 564(April):98–105

    Article  CAS  PubMed  Google Scholar 

  • Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications. Pharm Res 35(9):Article 176:1–20

    Google Scholar 

  • Jamroz W, Pyteraf J, Kurek M, Knapik-kowalczuk J, Szafraniec-szcz J, Jurkiewicz K, Leszczy B (2020) Multivariate design of 3D printed immediate-release tablets with liquid crystal-forming drug-itraconazole. Materials 13(4961)

    Google Scholar 

  • Joseph B, Ninan N, Visalakshan RM, Denoual C, Bright R, Kalarikkal N, Grohens Y, Vasilev K, Thomas S (2021) Insights into the biomechanical properties of plasma treated 3D printed PCL scaffolds decorated with gold nanoparticles. Compos Sci Technol 202(108544):1–12

    Google Scholar 

  • Kempin W, Franz C, Koster LC, Schneider F, Bogdahn M, Weitschies W, Seidlitz A (2017) Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm 115:84–93

    Article  CAS  PubMed  Google Scholar 

  • Kempin W, Domsta V, Grathoff G, Brecht I, Semmling B, Tillmann S, Weitschies W, Seidlitz A (2018) Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug. Pharm Res 35(6):1–12

    Article  CAS  Google Scholar 

  • Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S (2018) Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 545(1–2):144–152

    Article  CAS  PubMed  Google Scholar 

  • Kolter K, Karl M, Gryczke A (2012) Hot-melt extrusion with BASF pharma polymers – extrusion compendium. BASF SF, Ludwigshafen

    Google Scholar 

  • Korte C, Quodbach J, Korte C, Quodbach J (2018) Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol 23(10):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Koutsamanis I, Paudel A, Alva Zúñiga CP, Wiltschko L, Spoerk M (2021) Novel polyester-based thermoplastic elastomers for 3D-printed long-acting drug delivery applications. J Control Release 335(March):290–305

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Maddikunta R, Pham Q-v, Prabadevi B, Deepa N, Dev K, Reddy T, Ruby R, Liyanage M (2022) Industry 5.0: a survey on enabling technologies and potential applications. J Ind Inf Integ 26(100257)

    Google Scholar 

  • Lamichhane S, Park J-b, Sohn DH, Lee S (2019) Customized novel design of 3D printed pregabalin tablets for intra-gastric floating and controlled release using fused deposition modeling. Pharmaceutics 11(564):1–9

    Google Scholar 

  • Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima AL, Pires FQ, Hilgert LA, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M (2022) Oscillatory shear rheology as an in-process control tool for 3D printing medicines production by fused deposition modeling. J Manuf Process 76(February):850–862

    Article  Google Scholar 

  • Linares V, Casas M, Caraballo I (2019) Printfills: 3D printed systems combining fused deposition modeling and injection volume fi lling. Application to colon-specific drug delivery. Eur J Pharm Biopharm 134(August 2018):138–143

    PubMed  Google Scholar 

  • Long J, Nand AV, Ray S, Mayhew S, White D, Bunt CR, Seyfoddin A (2018) Development of customised 3D printed biodegradable projectile for administrating extended-release contraceptive to wildlife. Int J Pharm 548(1):349–356

    Article  CAS  PubMed  Google Scholar 

  • MacDonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker RB (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242

    Article  Google Scholar 

  • Macedo J, Samaro A, Vanhoorne V, Vervaet C, Pinto JF (2020) Processability of poly (vinyl alcohol) based filaments with paracetamol prepared by hot-melt extrusion for additive manufacturing. J Pharm Sci 109:3636–3644

    Article  CAS  PubMed  Google Scholar 

  • Macedo J, da Costa NF, Vanhoorne V, Vervaet C, Pinto JF (2022) The precision and accuracy of 3D printing of tablets by fused deposition modelling. J Pharm Sci 000:1–13

    Google Scholar 

  • Markl D, Sauerwein J, Goodwin DJ, Van Den Ban S, Axel Zeitler J (2017) Non-destructive determination of disintegration time and dissolution in immediate release tablets by terahertz transmission measurements. Pharm Res 34:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markl D, Strobel A, Schlossnikl R, Bøtker J, Bawuah P, Ridgway C, Rantanen J, Rades T, Gane P, Peiponen K-e, Zeitler JA (2018) Characterisation of pore structures of pharmaceutical tablets: a review. Int J Pharm 538(1–2):188–214

    Article  CAS  PubMed  Google Scholar 

  • Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A (2017) 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release 268(August):10–18

    Article  CAS  PubMed  Google Scholar 

  • Martin C (2016) Twin screw extruders as continuous mixers for thermal processing: a technical and historical perspective. AAPS PharmSciTech 17(1):3–19

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonagh T, Belton P, Qi S (2022) Direct granule feeding of thermal droplet deposition 3D printing of porous pharmaceutical solid dosage forms free of plasticisers. Pharm Res 39(3):599–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594

    Article  CAS  Google Scholar 

  • Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L (2016) Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 509(1–2):255–263

    Article  CAS  PubMed  Google Scholar 

  • Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S (2017) Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm 527(1–2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Nasereddin JM, Wellner N, Alhijjaj M, Belton P, Qi S (2018) Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm Res 35(8):1–13

    Article  CAS  Google Scholar 

  • Novak M, Boleslavská T, Wan A, Beránek J, Kova P (2018) Virtual prototyping and parametric design of 3D-printed tablets based on the solution of inverse problem. AAPS PharmSciTech 19(8):3414–3424

    Article  CAS  PubMed  Google Scholar 

  • Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Sohatee AA, Trombetta L, Patel K (2019a) Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. J 3D Print Med 3(1):23–37

    Google Scholar 

  • Nukala PK, Palekar S, Patki M, Patel K (2019b) Abuse deterrent immediate release egg-shaped tablet (egglets) using 3D printing technology: quality by design to optimize drug release and extraction. AAPS PharmSciTech 20(80):1–16

    Google Scholar 

  • Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA (2016) A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 33(11):2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA (2017) Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res 34(2):427–437

    Article  CAS  PubMed  Google Scholar 

  • Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA (2018) On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci 118(February):134–143

    Article  CAS  PubMed  Google Scholar 

  • Oladeji S, Mohylyuk V, Jones DS, Andrews GP (2022) 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS. Int J Pharm 616(February):121553

    Article  CAS  PubMed  Google Scholar 

  • Omari S, Ashour EA, Elkanayati R, Alyahya M, Almutairi M, Repka MA (2022) Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology. J Drug Delivery Sci Technol 74(June):103505

    Article  CAS  Google Scholar 

  • Ong JJ, Castro BM, Gaisford S, Cabalar P, Basit AW, Pérez G, Goyanes A (2022) Accelerating 3D printing of pharmaceutical products using machine learning. Int J Pharm X 4(April):1–11

    Google Scholar 

  • Palekar S, Nukala PK, Patel K (2022) Aversion liquid-filled drug releasing capsule (3D-RECAL): a novel technology for the development of immediate release abuse deterrent formulations using a fused deposition modelling (FDM) 3D printer. Int J Pharm 621(April):121804

    Article  CAS  PubMed  Google Scholar 

  • Parulski C, Jennotte O, Lechanteur A, Evrard B (2021) Challenges of fused deposition modeling 3D printing in pharmaceutical applications: Where are we now? Adv Drug Deliv Rev 175:1–18

    Article  Google Scholar 

  • Parulski C, Gresse E, Jennotte O, Felten A, Ziemons E, Lechanteur A, Evrard B (2022) Fused deposition modeling 3D printing of solid oral dosage forms containing amorphous solid dispersions: how to elucidate drug dissolution mechanisms through surface spectral analysis techniques? Int J Pharm 626(June):122157

    Article  CAS  PubMed  Google Scholar 

  • Pereira BC, Isreb A, Forbes RT, Dores F, Habashy R, Petit JB, Alhnan MA, Oga EF (2019) ‘Temporary Plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm 135(December 2018):94–103

    Article  PubMed  Google Scholar 

  • Pereira GG, Figueiredo S, Fernandes AI, Pinto JF (2020) Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics 12(9):1–63

    Article  Google Scholar 

  • Pietrzak K, Isreb A, Alhnan MA (2015) A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 96:380–387

    Article  CAS  PubMed  Google Scholar 

  • Ponsar H, Wiedey R, Quodbach J (2020) Hot-melt extrusion process fluctuations and their impact on critical quality attributes of filaments and 3d-printed dosage forms. Pharmaceutics 12(6):1–15

    Article  Google Scholar 

  • Pranzo D, Larizza P, Filippini D, Percoco G (2018) Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: A topical review. Micromachines 9(8):1–27

    Article  Google Scholar 

  • Prasad E, Islam MT, Goodwin DJ, Megarry AJ, Halbert GW, Florence AJ, Robertson J (2019) Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing. Addit Manuf 29(October 2018):100776

    Google Scholar 

  • Prasad E, Robertson J, Halbert GW (2020) Solid dispersions: improving drug performance through tablet micro-structure design. In: AAPS PharmSci360

    Google Scholar 

  • Quodbach J, Bogdahn M, Breitkreutz J, Chamberlain R, Eggenreich K, Elia AG, Gottschalk N, Gunkel-Grabole G, Hoffmann L, Kapote D, Kipping T, Klinken S, Loose F, Marquetant T, Windolf H, Geißler S, Spitz T (2021) Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther Innov Regul Sci (0123456789):910–928

    Google Scholar 

  • Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA (2016) Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513(1–2):659–668

    Article  CAS  PubMed  Google Scholar 

  • Sadia M, Isreb A, Abbadi I, Isreb M, Aziz D, Selo A, Timmins P, Alhnan MA (2018) From ‘fixed dose combinations’ to ‘a dynamic dose combiner’: 3D printed bi-layer antihypertensive tablets. Eur J Pharm Sci 123(July):484–494

    Article  CAS  PubMed  Google Scholar 

  • Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA (2018) Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release 269(September 2017):355–363

    Article  PubMed  Google Scholar 

  • Samaro A, Janssens P, Vanhoorne V, Van Renterghem J, Eeckhout M, Cardon L, De Beer T, Vervaet C (2020) Screening of pharmaceutical polymers for extrusion-based additive manufacturing of patient-tailored tablets. Int J Pharm 586(June):1–11

    Google Scholar 

  • Samaro A, Shaqour B, Goudarzi NM, Ghijs M, Cardon L, Boone MN, Verleije B, Beyers K, Vanhoorne V, Cos P, Vervaet C (2021) Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing? Int J Pharm 607(June):1–11

    Google Scholar 

  • Santos JD, da Silva GS, Velho MC, Beck RCR (2021) Eudragit®: a versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics 13(9):1–36

    CAS  Google Scholar 

  • Schneider C, Langer R, Loveday D, Hair D (2017) Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release 262(August):284–295

    Article  CAS  PubMed  Google Scholar 

  • Scoutaris N, Ross SA, Douroumis D (2018) 3D printed “starmix” drug loaded dosage forms for paediatric applications. Pharm Res 35(2):1–11

    Article  CAS  Google Scholar 

  • Serdeczny MP, Comminal R, Pedersen DB, Spangenberg J (2020) Experimental and analytical study of the polymer melt flow through the hot- end in material extrusion additive manufacturing. Addit Manuf 32(100997):1–13

    Google Scholar 

  • Shaqour B, Samaro A, Verleije B, Beyers K, Vervaet C (2020) Production of drug delivery systems using fused filament fabrication: a systematic review. Pharmaceutics 12:1–16

    Article  Google Scholar 

  • Shi K, Slavage JP, Maniruzzaman M, Nokhodchi A (2021) Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm 597(December 2020):120315

    Article  Google Scholar 

  • Solanki NG, Tahsin Md., Shah AV, Serajuddin ATM (2018) Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci 107(1):390–401

    Article  CAS  PubMed  Google Scholar 

  • Spoerk M, Arbeiter F, Koutsamanis I, Cajner H, Katschnig M, Eder S (2021) Personalised urethra pessaries prepared by material extrusion-based additive manufacturing. Int J Pharm 608(September):121112

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E (2020) Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics 12(2):1–16

    Article  Google Scholar 

  • Tagami T, Kuwata E, Sakai N, Ozeki T (2019) Drug incorporation into polymer filament using simple soaking method for tablet preparation using fused deposition modeling. Biol Pharm Bull 42(10):1753–1760

    Article  PubMed  Google Scholar 

  • Tan DK, Maniruzzaman M, Nokhodchi A (2020) Development and optimisation of novel polymeric compositions for sustained release theophylline. Polymers 12(1):1–18

    CAS  Google Scholar 

  • Teo EY, Ong SY, Chong MSK, Zhang Z, Lu J, Moochhala S, Ho B, Teoh SH (2011) Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 32(1):279–287

    Article  CAS  PubMed  Google Scholar 

  • Than YM, Titapiwatanakun V (2021) Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int J Pharm 599(January):120402

    Article  CAS  PubMed  Google Scholar 

  • Than YM, Suriyarak S, Titapiwatanakun V (2022) Rheological investigation of hydroxypropyl cellulose–based filaments for material extrusion 3D printing. Polymers 14(6):1–24

    Article  Google Scholar 

  • Tidau M, Finke JH, Kwade A, Braunschweig TU, Pharmaceutical Engineering (2019) Influence of high API load on properties along the 3D- printing process chain of solid dosage forms. Pharmaceutics 11(194):1–17

    Google Scholar 

  • Tlegenov Y, Hong GS, Lu WF (2018) Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf 54(May):45–55

    Article  Google Scholar 

  • Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW (2018) 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci 39(5):440–451

    Article  CAS  PubMed  Google Scholar 

  • Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204

    Article  Google Scholar 

  • Verstraete G, Samaro A, Grymonpre W, Vanhoorne V, Van Snick B, Boone MN, Hellemans T, Van Hoorebeke L, Remon JP, Vervaet C (2018) 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 536(1):318–325

    Article  CAS  PubMed  Google Scholar 

  • Viidik L, Vesala J, Laitinen R, Korhonen O, Ketolainen J, Aruväli J, Kirsimäe K, Kogermann K, Heinämäki J, Laidmäe I, Ervasti T (2021) Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets. Eur J Pharm Sci 158(October 2020):1–8

    Google Scholar 

  • Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA (2020) Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 246(March):116519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YC, Chen T, Yeh YL (2019) Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. Int J Adv Manuf Technol 105(10):4059–4069

    Article  Google Scholar 

  • Welsh NR, Malcolm RK, Devlin B, Boyd P (2019) Dapivirine-releasing vaginal rings produced by plastic freeforming additive manufacturing. Int J Pharm 572(September):118725

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Solanki NG, Vasoya JM, Shah AV, Serajuddin ATM (2020) Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release. J Pharm Sci 109(4):1558–1572

    Article  CAS  PubMed  Google Scholar 

  • Windolf H, Chamberlain R, Breitkreutz J, Quodbach J (2022) 3D printed mini-floating-polypill for Parkinson’s disease: combination of levodopa, benserazide, and pramipexole in various dosing for personalized therapy. Pharmaceutics 14(5):1–7

    Article  Google Scholar 

  • Windolf H, Chamberlain R, Delmotte A, Quodbach J (2022) Blind-watermarking–proof-of-concept of a novel approach to ensure batch traceability for 3D printed tablets. Pharmaceutics 14(2):1–22

    Article  Google Scholar 

  • Wu Z, Hong Y (2019) Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management. ACS Appl Mat Interfaces 11(37):33734–33747

    Article  CAS  Google Scholar 

  • Xu P, Li J, Meda A, Osei-Yeboah F, Peterson ML, Repka M, Zhan X (2020) Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing. Int J Pharm 588(August):119760

    Article  CAS  PubMed  Google Scholar 

  • Yadav DK, Srivastava R, Dev S (2019) Design & fabrication of ABS part by FDM for automobile application. Mater Today Proc 26:2089–2093

    Article  Google Scholar 

  • Yang Y, Wang H, Li H, Ou Z, Yang G (2018) 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci 115:11–18

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wu H, Fu Q, Xie X, Song Y, Xu M, Li J (2022) 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mat Des 214:110394

    CAS  Google Scholar 

  • Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN (2022) Polysaccharide 3D printing for drug delivery applications. Pharmaceutics 14(1):1–32

    Article  Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu P, Vo AQ, Bandari S, Yang F, Durig T, Repka MA (2019) Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J Drug Deliv Sci Technol 52:292–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Nasereddin J, Mcdonagh T, Von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604(February):120626

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yi X, Yan J, Gleadall A, Belton P, Bibb R (2022) Development of combi-pills using the coupling of semi-solid syringe extrusion 3D printing with fused deposition modelling. Int J Pharm 625(August):122140

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wei W, Niu R, Li Q, Hu C, Jiang S (2022) 3D printed intragastric floating and sustained-release tablets with air chambers. J Pharm Sci 111(1):116–123

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Deng F, Wang B, Wu Y, Luo Q, Zuo X, Liu X, Cao L, Li M, Lu H, Cheng S, Li X (2021) Melt extrusion deposition (MED™) 3D printing technology – a paradigm shift in design and development of modified release drug products. Int J Pharm 602(January):120639

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Vervaet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henry, S., Vanhoorne, V., Vervaet, C. (2023). Fused Deposition Modeling (FDM) of Pharmaceuticals. In: Banerjee, S. (eds) Additive Manufacturing in Pharmaceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-99-2404-2_2

Download citation

Publish with us

Policies and ethics