Skip to main content

Advances in Peptide Synthesis

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research

Abstract

Peptide drug development has made significant progress over the last century. The discovery of solid-phase peptide synthesis has enabled chemists to synthesize various peptides with divergent sequence patterns. However, due to the increased demand for various peptide sequences in the modern pharmaceutical industry, there is always room for new methods to modify the existing methods to improve yield, purity, and synthesis time. The current century has witnessed a lot of progress in the field of peptide synthesis, including developments in new synthetic strategies, suitable selection of protecting groups, and introduction of efficient coupling reagents, as well as the development of automated peptide synthesizers. This chapter will give a summary of the recent reports on the most significant breakthroughs in peptide chemical synthesis in current years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson GW (1960) New approaches to peptide synthesis. Ann N Y Acad Sci 88:676–688

    Article  CAS  PubMed  Google Scholar 

  • Angell YM, García-Echeverría C, Rich DH (1994) Comparative studies of the coupling of N-methylated, sterically hindered amino acids during solid-phase peptide synthesis. Tetrahedron Lett 35:5981–5984

    Article  CAS  Google Scholar 

  • Babu VVS, Rao RVR (2005) Microwave irradiated high-speed solution synthesis of peptide acids employing Fmoc-amino acid pentafluorophenyl esters as coupling agents. Indian J Chem 44B:2328–2332

    CAS  Google Scholar 

  • Bang D, Kent SB (2004) A one-pot total synthesis of crambin. Angew Chem Int Ed 43:2534–2538

    Article  CAS  Google Scholar 

  • Barany G, Albricio F, Biancalana S et al (1992) Biopolymer syntheses on novel polyethylene glycol-polystyrene (PEG-PS) graft supports. Minnesota University Minneapolis Department of Chemistry, Minneapolis, MN

    Book  Google Scholar 

  • Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 120:6957–6961

    Article  Google Scholar 

  • Bondalapati S, Jbara M, Brik A (2016) Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 8:407–418

    Article  CAS  PubMed  Google Scholar 

  • Bonnamour J, Métro TX, Martinez J et al (2013) Environmentally benign peptide synthesis using liquid-assisted ball-milling: application to the synthesis of Leu-enkephalin. Green Chem 15:1116–1120

    Article  CAS  Google Scholar 

  • Cabrele C, Martinek TA, Reiser O et al (2014) Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem 57:9718–9739

    Article  CAS  PubMed  Google Scholar 

  • Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  • Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  • Carpino LA, El-Faham A, Minor CA (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Comm 2:201–203

    Article  Google Scholar 

  • Carpino LA, Imazumi H, El-Faham A et al (2002) The uronium/guanidinium peptide coupling reagents: finally, the true uronium salts. Angew Chem Int Ed 41:441–445

    Article  CAS  Google Scholar 

  • Chatterjee J, Gilon C, Hoffman A et al (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Rechenmacher F, Kessler H (2013) N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed 52:254–269

    Article  CAS  Google Scholar 

  • Cheloha RW, Watanabe T, Dean T (2016) Backbone modification of a parathyroid hormone receptor-1 antagonist/inverse agonist. ACS Chem Biol 1:2752–2762

    Article  Google Scholar 

  • Clark RJ, Craik DJ (2010) Invited review native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Peptide Sci 94:414–422

    Article  CAS  Google Scholar 

  • Collins JM, Collins MJ (2003) Biopolymers 71:267

    Google Scholar 

  • Collins JM, Porter KA, Singh SK et al (2014) High-efficiency solid phase peptide synthesis (HE-SPPS). Org Lett 16:940–943

    Article  CAS  PubMed  Google Scholar 

  • Coste J, Le-Nguyen D, Castro B (1990) PyBOP®: a new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  • Declerck V, Nun P, Martinez J et al (2009) Solvent-free synthesis of peptides. Angew Chem Int Ed 48:9318–9321

    Article  CAS  Google Scholar 

  • Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52:855–868

    Article  CAS  PubMed  Google Scholar 

  • Dirksen A, Dawson PE (2008) Expanding the scope of chemoselective peptide ligations in chemical biology. Curr Opin Chem Biol 12:760–766

    Article  CAS  PubMed  Google Scholar 

  • Domalaon R, Zhanel GG, Schweizer F (2016) Curr Top Med Chem 16:141–155

    Article  Google Scholar 

  • El-Faham A, Funosas RS, Prohens R et al (2009) COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem Eur J 15:9404–9416

    Article  CAS  PubMed  Google Scholar 

  • Erdelyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Galanis AS, Albericio F, Grøtli M (2009) Solid-phase peptide synthesis in water using microwave-assisted heating. Org Lett 11:4488–4491

    Article  CAS  PubMed  Google Scholar 

  • Gibson SE, Lecci C (2006) Amino acid derived macrocycles-an area driven by synthesis or application? Angew Chem Int Ed 45:1364–1377

    Article  CAS  Google Scholar 

  • Gieselman MD, Xie L, Van Der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Guzmán F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10:279–314

    Article  Google Scholar 

  • Haase C, Seitz O (2008) Extending the scope of native chemical peptide coupling. Angew Chem Int Ed 47:1553–1556

    Article  CAS  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nature Rev Drug Disc 2:214–221

    Article  CAS  Google Scholar 

  • Hartrampf N, Saebi A, Poskus M et al (2020) Synthesis of proteins by automated flow chemistry. Science 368:980–987

    Article  CAS  PubMed  Google Scholar 

  • Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414

    Article  CAS  PubMed  Google Scholar 

  • Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123:5140–5141

    Article  CAS  PubMed  Google Scholar 

  • Jad YE, Kumar A, El-Faham A et al (2019) Green transformation of solid-phase peptide synthesis. ACS Sustain Chem Eng 7:3671–3683

    Article  CAS  Google Scholar 

  • Jiang W, Zhang B, Fan C et al (2017) Mirror-image polymerase chain reaction. Cell Discov 3:1–7

    Article  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hu Y, Liu T (2012) Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: medicinal chemistry and preclinical aspects. Curr Med Chem 19:3982–3999

    Article  CAS  PubMed  Google Scholar 

  • Macmillan D (2006) Evolving strategies for protein synthesis converge on native chemical ligation. Angew Chem Int Ed 45:7668–7672

    Article  CAS  Google Scholar 

  • Mahindra A, Sharma KK, Jain R (2012) Rapid microwave-assisted solution-phase peptide synthesis. Tetrahedron Lett 53:6931–6935

    Article  CAS  Google Scholar 

  • Mahindra A, Nooney K, Uraon S et al (2013) Microwave-assisted solution phase peptide synthesis in neat water. RSC Adv 3:16810–16816

    Article  CAS  Google Scholar 

  • Mahto SK, Howard CJ, Shimko JC (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. Chembiochem 12:2488–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Liu G, Ton-That H et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis I. the synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Merrifield RB (1985) Solid phase synthesis (Nobel lecture). Angew Chem Int Ed 24:799–810

    Article  Google Scholar 

  • Merrifield RB (1986) Solid phase synthesis. Science 232:341–347

    Article  CAS  PubMed  Google Scholar 

  • Mijalis AJ, Thomas DA, Simon MD et al (2017) A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol 13:464–466

    Article  CAS  PubMed  Google Scholar 

  • Mong SK, Vinogradov AA, Simon MD et al (2014) Rapid total synthesis of DARPin pE59 and barnase. Chembiochem 15:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mótyán JA, Tóth F, Tőzsér J (2013) Research applications of proteolytic enzymes in molecular biology. Biomol Ther 3:923–942

    Google Scholar 

  • Murray JK, Gellman SH (2005) Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org Lett 7:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 7:1067–1083

    Article  Google Scholar 

  • Nguyen GK, Hemu X, Quek JP (2016) Butelase-mediated macrocyclization of d-amino-acid-containing peptides. Angew Chem Int Ed 128:12994–12998

    Article  Google Scholar 

  • Pedersen SL, Tofteng AP, Malik L (2012) Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 41:1826–1844

    Article  CAS  PubMed  Google Scholar 

  • Quaderer R, Sewing A, Hilvert D (2001) Selenocysteine-mediated native chemical ligation. Helv Chim Acta 84:1197–1206

    Article  CAS  Google Scholar 

  • Rapp W, Zhang L, Habich R et al (1988) Polystyrene-polyoxyethylene graft copolymers for high-speed peptide synthesis, pp 199–201

    Google Scholar 

  • Rodríguez H, Suarez M, Albericio F (2010) A convenient microwave-enhanced solid-phase synthesis of short chain N-methyl-rich peptides. J Pept Sci 16:136–140

    Article  PubMed  Google Scholar 

  • Sato AK, Viswanathan M, Kent RB et al (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642

    Article  CAS  PubMed  Google Scholar 

  • Schnölzer M, Alewood P, Jones A et al (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180–193

    Article  PubMed  Google Scholar 

  • Simon MD, Heider PL, Adamo A et al (2014) Rapid flow-based peptide synthesis. Chembiochem 15:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subirós-Funosas R, Prohens R, Barbas R et al (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403

    Article  PubMed  Google Scholar 

  • Torbeev VY, Kent SB (2007) Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew Chem Int Ed 46:1667–1670

    Article  CAS  Google Scholar 

  • Tsuda Y, Okada Y (2010) Amino acids, peptides and proteins in organic chemistry. Wiley, Hoboken, NJ, pp 201–251

    Book  Google Scholar 

  • Uhlig T, Kyprianou T, Martinelli FG (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69

    Article  CAS  Google Scholar 

  • Ulijn RV, Baragaña B, Halling PJ et al (2002) Protease-catalyzed peptide synthesis on solid support. J Am Chem Soc 124:10988–10989

    Article  CAS  PubMed  Google Scholar 

  • Ulijn RV, Bisek N, Halling PJ et al (2003) Understanding protease catalysed solid phase peptide synthesis. Org Biomol Chem 1:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Våbenø J, Haug BE, Rosenkilde MM (2015) Progress toward rationally designed small-molecule peptide and peptidomimetic CXCR4 antagonists. Future Med Chem 7:1261–1283

    Article  PubMed  Google Scholar 

  • Verlander M (2007) Industrial applications of solid-phase peptide synthesis–a status report. Int J Pept Res Ther 13:75–82

    Article  CAS  Google Scholar 

  • Wang L, Wang N, Zhang W et al (2022) Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 7:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner HM, Cabalteja CC, Horne WS (2016) Peptide backbone composition and protease susceptibility: impact of modification type, position, and tandem substitution. Chembiochem 17:712–718

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Guo X, Guo Z (2011) Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides. Chem Commun 47:9218–9220

    Article  CAS  Google Scholar 

  • Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    Article  CAS  PubMed  Google Scholar 

  • Zheng JS, Tang S, Huang YC et al (2013) Development of new thioester equivalents for protein chemical synthesis. Acc Chem Res 46:2475–2484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

G.K.R. is thankful to the National Institute of Pharmaceutical Education and Research, S. A. S. Nagar for providing a Senior Research Fellowship. R.M. thanks the Department of Science and Technology, New Delhi for DST Faculty Inspire Fellowship (No. DST/INSPIRE/04/2020/002499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathod, G.K., Misra, R., Jain, R. (2023). Advances in Peptide Synthesis. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_8

Download citation

Publish with us

Policies and ethics