Skip to main content

Prospects of Gene Editing Techniques in Manipulating the Rhizosphere Microbiome for Millets Productivity

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are a group of important drought-resistant “nutri-cereals” commonly cultivated in arid and semi-arid areas. A renewed focus on increasing their production and highlighting nutritional benefits is critical for promoting diverse diets and ensuring climate and food-nutritional security. Although millets are comparatively more climate-resilient than other cereals, their growth and production are frequently hindered by prolonged exposure to several abiotic and biotic stresses. In this line, improved millet varieties can be developed through various simple yet precise genome editing techniques. Targeted editing of the plant genomes not only expands our knowledge of the fundamental basis of plant physiology but also provides an opportunity for improving productivity and quality of crops. In addition, the rhizospheric plant–microbe interactions can also be explored toward formulating sustainable agricultural practices under challenging environments. The rhizosphere is plausibly the most complex interface facilitating the dynamic interactions between a plethora of microbial entities and plant roots. The microbial assemblages of millets consist of many plants’ growth-promoting rhizobacteria such as N2-fixers, mineral (phosphate and zinc) solubilizers, anti-pathogenic bacteria, arbuscular mycorrhizal fungi, etc. The association of this microbial population with millet plants confers direct or indirect resistance to several abiotic (drought, salinity, heat, cold, oxidation, etc.) and biotic stresses (insects attacks, soil-borne phytopathogens), also modulates rhizoexudation, root architecture, plant biometry, and phenology. As such, elucidating the microbial diversity, deciphering and managing their biological functions will help in harnessing plant–microbe cross-talks toward increasing ecosystem services, plant plasticity, and productivity under environmental perturbations. Advances in gene editing techniques such as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9), ZFN (zinc finger nucleases), TALENS (transcription activator-like effector nucleases), base editing, prime editing, etc. allow us to untangle the web of plant–microbe interaction as well as to improve nutritional qualities and stress tolerance of crops. Since studies on rhizosphere microbiota structure associated with millets are scanty, most of our understanding in genome-editing techniques has been derived from non-millet plants. In this chapter, we focused on how mechanistic understanding of various genome-editing technologies can be leveraged for the manipulation of susceptible genes and increase the plant’s fitness under diverse ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY (2016) Genomics era for plants and crop species—advances made and needed tasks ahead. In: Abdurakhmonov IY (ed) Plant genomics. IntechOpen.; https://www.intechopen.com/chapters/49877, London. https://doi.org/10.5772/62083

    Chapter  Google Scholar 

  • Alghuthaymi MA, Ahmad A, Khan Z, Khan SH, Ahmed FK, Faiz S, Nepovimova E, Kuča K, Abd-Elsalam KA (2021) Exosome/liposome-like nanoparticles: new carriers for CRISPR genome editing in plants. Int J Mol Sci 22:7456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:1–11

    CAS  Google Scholar 

  • Ali R, Zulaykha KD, Sajjad N (2020) Genetically modified microbes as biofertilizers. In: Bioremediation and biotechnology, vol 4. Springer International Publishing, Cham, pp 275–293

    Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941

    CAS  PubMed  Google Scholar 

  • Basu S, Rabara RC, Negi S, Shukla P (2018) Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol 36:499–510

    CAS  PubMed  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci 96:8774–8778. https://doi.org/10.1073/pnas.96.15.8774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benidire L, Lahrouni M, El Khalloufi F, Gottfert M, Oufdou K (2017). Effects of Rhizobium leguminosarum inoculation on growth, nitrogen uptake and mineral assimilation in Vicia faba plants under salinity stress. J. Agr. Sci. Tech 19: 889-901

    Google Scholar 

  • Biswas D, Saha SC, Dey A (2021) CRISPR-Cas genome-editing tool in plant abiotic stress-tolerance. Plant Gene 26:100286

    CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Chen K, Shan Q, Gao C (2014) An efficient TALEN mutagenesis system in rice. Methods 69:2–8

    CAS  PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, Zhang H, Diao X, Guo Y, Li X, Wu C (2021) Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19:1089

    PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:8. https://doi.org/10.3835/plantgenome2012.06.0008

    Article  CAS  Google Scholar 

  • Davies K (2019) CRISPR’s China crisis: germline editing claim could raise danger of overreaction or present opportunity for regulation. Genet Eng Biotechnol News 39:54–56

    Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:1–8

    Google Scholar 

  • Dixon RA, Postgate JR (1971) Transfer of nitrogen-fixation genes by conjugation in Klebsiella pneumoniae. Nature 234:47–48

    CAS  PubMed  Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429

    Google Scholar 

  • Eaton-Rye JJ, Vermaas WFJ (1991) Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 17:1165–1177. https://doi.org/10.1007/BF00028733

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199

    PubMed  PubMed Central  Google Scholar 

  • Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276

    CAS  PubMed  Google Scholar 

  • Ghosh S, Dey G (2022) Biotic and abiotic stress tolerance through CRISPR-Cas mediated genome editing. J Plant Biochem Biotechnol 31:227–238

    CAS  Google Scholar 

  • Gocal GFW, Schopke C, Beetham PR (2015) Oligo-mediated targeted gene editing. In: Advances in new technology for targeted modification of plant genomes. Springer, New York, pp 73–89

    Google Scholar 

  • Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4:263–269

    CAS  PubMed  Google Scholar 

  • Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustain Food Syst 5:617157

    Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838

    CAS  PubMed  Google Scholar 

  • Hua K, Tao X, Han P, Wang R, Zhu J-K (2019) Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant 12:1003–1014

    CAS  PubMed  Google Scholar 

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    PubMed  PubMed Central  Google Scholar 

  • Kang BC, Yun JY, Kim ST, Shin Y, Ryu J, Choi M, Woo JW, Kim JS (2018) Precision genome engineering through adenine base editing in plants. Nat Plants 4:427–431

    CAS  PubMed  Google Scholar 

  • Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16:856–866

    CAS  PubMed  Google Scholar 

  • Kerbab S, Silini A, Chenari Bouket A, Cherif-Silini H, Eshelli M, El Houda RN, Belbahri L (2021) Mitigation of NaCl stress in wheat by rhizosphere engineering using salt habitat adapted PGPR halotolerant bacteria. Appl Sci 11:1034

    CAS  Google Scholar 

  • Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knorre DG, Vlasov VV (1985) Reactive derivatives of nucleic acids and their components as affinity reagents. Russ Chem Rev 54:836

    Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol 132:174–184. https://doi.org/10.1104/pp.102.016857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dubey A (2020) Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb BM, Mercer AC, Barbas CF III (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41:9779–9785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Nguyen K, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24:263–274

    CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  PubMed  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 79:181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CS et al (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22:4206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Liang Z (2021) CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regul 94:115–129

    CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    CAS  PubMed  Google Scholar 

  • Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen fixing plants and microbiome research. Plants (Basel) 9:97

    CAS  PubMed  Google Scholar 

  • Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S (2021) Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol 27:100210

    Google Scholar 

  • Mao Y, Botella JR, Liu Y, Zhu J-K (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6:421–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelraj P, Shanmugam A (2013) A study on millets based cultivation and consumption in India. Int J Market Financ Serv Manag Res 2:49–58

    Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    CAS  PubMed  Google Scholar 

  • Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst 5:606815

    Google Scholar 

  • Moreira BC, Prates Júnior P, Dell B, Kasuya MCM (2022) Roots and beneficial interactions with soil microbes. In: Subsoil constraints for crop production. Springer, Cham, pp 263–287

    Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501–1501

    CAS  PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noirot-Gros M-F, Forrester S, Malato G, Larsen PE, Noirot P (2019) CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci Rep 9:1–14

    CAS  Google Scholar 

  • Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22:509–512. https://doi.org/10.1007/s00299-003-0698-2

    Article  CAS  PubMed  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci 107:12034–12039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pati D, Kesh R, Mohanta V, Pudake RN, Sevanthi AM, Sahu BB (2022) Genome-editing approaches for abiotic stress tolerance in small millets. In: Omics of climate resilient small millets. Springer, Singapore, pp 259–273

    Google Scholar 

  • Postgate JR, Kent HM (1987) Qualitative evidence for expression of Klebsiella pneumoniae nif in Pseudomonas putida. Microbiology 133:2563–2566

    CAS  Google Scholar 

  • Rai PK, Kim K-H, Lee SS, Lee J-H (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    CAS  PubMed  Google Scholar 

  • Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y (2020) Plant regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J 101:237–248

    CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Tejedor C, Peix A (2014) Bacterial endophytes inhabiting potato plants (Solanum tuberosum L.). Agric Res Updat 7:3-1.

    Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohatgi V, Challagulla NV, Pudake RN (2022) Current status and future prospects of nanoparticles as plant genetic materials carrier. In: Nano-enabled agrochemicals in agriculture. Elsevier, Amsterdam, pp 407–424

    Google Scholar 

  • Ruiter R, Van Den Brande I, Stals E, Delauré S, Cornelissen M, D’halluin K (2004) Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol Biol 53:715–729

    Google Scholar 

  • Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5:314–330

    CAS  PubMed  Google Scholar 

  • Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schöpke CR, Gocal GF (2016a) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J 14:496–502

    CAS  PubMed  Google Scholar 

  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA (2016b) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928. https://doi.org/10.1104/pp.15.01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholefield J, Harrison PT (2021) Prime editing—an update on the field. Gene Ther 28:396–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8:e63666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Baltes NJ, Atkins P, Kirkland ER, Zhang Y, Baller JA, Lowder LG, Malzahn AA, Haugner JC III, Seelig B, Voytas DF (2018) ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: a disconnect between somatic and germinal cells. J Genet Genom Yi chuan xue bao 45:681

    CAS  Google Scholar 

  • Shelake RM, Pramanik D, Kim J-Y (2019) Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorganisms 7:269

    PubMed  PubMed Central  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Singh S, Ramakrishna W (2021) Application of CRISPR–Cas9 in plant–plant growth-promoting rhizobacteria interactions for next green revolution. 3 Biotech 11:1–25

    Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    CAS  PubMed  Google Scholar 

  • Swingle B, Markel E, Costantino N et al (2010) Oligonucleotide recombination in Gram-negative bacteria. Mol Microbiol 75:138–148. https://doi.org/10.1111/j.1365-2958.2009.06976.x

    Article  CAS  PubMed  Google Scholar 

  • Takatsuka A, Kazama T, Si A, Toriyama K (2022) TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J 110:994–1004

    CAS  PubMed  Google Scholar 

  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996

    PubMed  PubMed Central  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsanova T, Stefanova L, Topalova L, Atanasov A, Pantchev I (2021) DNA-free gene editing in plants: a brief overview. Biotechnol Biotechnol Equip 35:131–138

    CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • Varanda CM, Félix MR, Campos MD, Patanita M, Materatski P (2021) Plant viruses: from targets to tools for CRISPR. Viruses 13:141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang L, Liu Z, Zhao D, Liu X, Zhang B, Xie J, Hong Y, Li P, Chen S, Dixon R (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 9:e1003865

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    CAS  PubMed  Google Scholar 

  • Wang D, Zhang F, Gao G (2020) CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181:136–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Li Y, He Z, Van Nostrand JD, Zhou J (2017) Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in Clostridium cellulolyticum. Front Microbiol 8:1744

    PubMed  PubMed Central  Google Scholar 

  • Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020) Development of plant prime-editing systems for precise genome editing. Plant Commun 1:100043

    PubMed  PubMed Central  Google Scholar 

  • Yi Y, Li Z, Song C, Kuipers OP (2018) Exploring plant–microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environ Microbiol 20:4245–4260

    CAS  PubMed  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028–12033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 96(15):8768–8773

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deka, P., Bora, S.S., Gautom, T., Barooah, M. (2023). Prospects of Gene Editing Techniques in Manipulating the Rhizosphere Microbiome for Millets Productivity. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_14

Download citation

Publish with us

Policies and ethics