Skip to main content

Porous Particle Technology: Novel Approaches to Deep Lung Delivery

  • Chapter
  • First Online:
Pulmonary Drug Delivery Systems: Material and Technological Advances

Abstract

Porous particle technologies are widely used to deliver small and large molecular drugs to the lung for local and systemic treatment. Porous particles are able to deliver high drug payload via dry powder inhalers. The greatest advantages of porous particles are their simple dispersion and reduced aerodynamic diameter from their low density. When compared to non-porous particles, inhaled porous particles showed deep lung deposition. Carrier particle morphology has significant impacts on aerodynamic distribution. Additionally, large particle size also restricts immune response, which is beneficial in treating a number of lung diseases and makes them suitable carriers for antibiotics and anticancer molecules. The design of porous materials for controlled drug delivery is experimentally successful. The commercial application of porous particles for the pulmonary delivery of drugs with systemic or controlled release would be feasible when clinical outcomes are successful. Several technologies have been successfully employed in the production of porous particles, i.e., double-emulsion solvent evaporation technology, spray drying technology, supercritical fluid-assisted anti-solvent technology, spray freeze drying technology, and co-suspension delivery technology. Commercial porous particle technology includes PulmoSphere™ and Aerogel. In this chapter, the mentioned technologies are discussed along with examples of pertinent research and their applications for pulmonary delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boddu S, Nesamony J. Nanocarrier systems for lung drug delivery. In: Pathak Y, Islam N, editors. Handbook of lung targeted drug delivery systems: recent trends and clinical evidences. Boca Raton: CRC Press; 2022.

    Google Scholar 

  2. Katiyar SK, Gaur SN, Solanki RN, et al. Indian guideline on nebulization therapy. Indian J Tuberc. 2022;69:S1–S191.

    Article  PubMed  Google Scholar 

  3. Lavorini F. The challenge of delivering therapeutic aerosols to asthma patients. Allergy. 2013:102418.

    Google Scholar 

  4. Dalby R, Spallek M, Voshaar T. A review of the development of Respimat® soft mist™ inhaler. Int J Pharm. 2004;283(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Iwanaga T, Tohda Y, Nakamura S, Suga Y. The Respimat® soft mist inhaler: implications of drug delivery characteristics for patients. Clin Drug Investig. 2019;39:1021–30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin X, Kankala RK, Tang N, Xu P, Hao L, Yang D, Wang S, Zhang YS, Chen A. Supercritical fluid-assisted porous microspheres for efficient delivery of insulin and inhalation therapy of diabetes. Adv Healthc Mater. 2018:1800910.

    Google Scholar 

  7. Mahato RI, Narang A. Inserts, implants, and devices. In Mahato, RI, Narang AS, editors. Pharmaceutical dosage forms and drug delivery. Boca Raton: CRC Press; 2018. p563–581.

    Google Scholar 

  8. Batycky R, Deaver D, Dwivedi S, Hrkach J, Johnston L, Olsen T, Wright JE. Chapter 75: the development of large porous particles for inhalation drug delivery. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. Marcel Dekker, Inc.; 2003. p. 891–902.

    Google Scholar 

  9. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, Langer R, Edwards DA. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16:1735–42.

    Article  CAS  PubMed  Google Scholar 

  10. López-Iglesias C, Casielles AM, Altay A, Bettini R, Alvarez-Lorenzo C. García-González CA from the printer to the lungs: inkjet-printed aerogel particles for pulmonary delivery. Chem Eng J. 2019;357:559–66.

    Article  Google Scholar 

  11. Musante CJ, Schroeter JD, Rosati JA, Crowder TM, Hickey AJ, Martonen TB. Factor affecting the deposition of inhaled porous drug delivery. J Pharm Sci. 2002;91:1590–600.

    Article  CAS  PubMed  Google Scholar 

  12. Batycky R, Nice J, Chen D, Sung J, Lipp M, Mintzes J, Dunbar C, Niven R, Edwards D. Production and characterization of large porous particles for pulmonary drug delivery. Mat Res Soc Symp Proc. 1999;550:95–100.

    Article  CAS  Google Scholar 

  13. Duong T, López-Iglesias C, Szewczyk PK, Stachewicz U, Barros J, Alvarez-Lorenzo C, Alnaief M, García-González CA. A pathway from porous particle technology toward tailoring aerogels for pulmonary drug administration. Front Bioeng Biotechnol. 2021;9:671381.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB. Fundamental effects of particles morphology on lung delivery: predictions of stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm Res. 2002;19:239–45.

    Article  CAS  PubMed  Google Scholar 

  15. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 1998;85:379–85.

    Article  CAS  PubMed  Google Scholar 

  16. Lam J, Vaughan S, Parkins MD. Tobramycin inhalation powder (TIP): an efficient treatment strategy for the management of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Clin Med Insights: Circ Respir Pulm Med. 2013;7:61–77.

    PubMed  Google Scholar 

  17. Konstan MW, Geller DE, Minic P, Brockhaus F, Zhang J, Angyalosi G. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the EVOLVE trial. Pediatr Pulmonol. 2011;46:230–8.

    Article  PubMed  Google Scholar 

  18. Weers J, Tarara T. The PulmoSphere™ platform for pulmonary drug delivery. Ther Deliv. 2014;5:277–95.

    Article  CAS  PubMed  Google Scholar 

  19. Weers JG, Miller DP, Tarara TE. Spray-dried PulmoSphere™ formulations for inhalation comprising crystalline drug particles. AAPS PharmSciTech. 2019;20:103.

    Article  CAS  PubMed  Google Scholar 

  20. Hirst PH, Pitcairn GR, Wees JG, Tarara TE, Clark AR, Dellamary LA, Hall G, Shorr J, Newman SP. In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharm Res. 2002;19:258–64.

    Article  CAS  PubMed  Google Scholar 

  21. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, Gill H, Weers JG. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;27:168–74.

    Article  Google Scholar 

  22. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002;99:12001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gharse S, Fiegel J. Large porous particles: lightweight champions of pulmonary drug delivery. Curr Pharm Des. 2016;22:2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang L, Luo J, Shi S, Zhang Q, Sun X, Zhang Z, Gong T. Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int J Pharm. 2013;451:104–11.

    Article  CAS  PubMed  Google Scholar 

  25. Yang T, Wen B, Liu K, Qin M, Gao Y, Ding D, Li W, Zhang Y, Zhang W. Cyclosporine a/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. Artif Cells Nanomed Biotechnol. 2018;46(sup2):552–64.

    Article  CAS  PubMed  Google Scholar 

  26. Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull. 2012;60:870–6.

    Article  CAS  Google Scholar 

  27. Sharma A, Vaghasiya K, Verma RK. Inhalable microspheres with hierarchical pore size for tuning the release of biotherapeutics in lungs. Micropor Mesopor Mat. 2016;235:195–203.

    Article  CAS  Google Scholar 

  28. Gulin-Sarfraz T, Jonasson S, Wigenstam E, Haartman EV, Bucht A, Rosenholm JM. Feasibility study of mesoporous silica particles for pulmonary drug delivery: therapeutic treatment with dexamethasone in a mouse model of airway inflammation. Pharmaceutics. 2019;11:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shiehzadeh F, Tafaghodi M, Laal-Dehghani M, Mashhoori F, Sedigheh B, Bazzaz F, Imenshahidi M. Preparation and characterization of a dry powder inhaler composed of PLGA large porous particles encapsulating gentamicin sulfate. Adv Pharm Bull. 2019;9:255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30:1947–53.

    Article  CAS  PubMed  Google Scholar 

  31. Chvatal A, Ambrus R, Party P, Katona G, Jójárt-Laczkovich O, Szabó-Révész P, Fattal E, Tsapis N. Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery. Int J Pharm. 2019;558:68–75.

    Article  Google Scholar 

  32. N’Guessan A, Fattal E, Chapron D, Gueutin C, Koffi A, Tsapis N. Dexamethasone palmitate large porous particles: a controlled release formulation for lung delivery of corticosteroids. Eur J Pharm Sci. 2018;113:185–92.

    Article  PubMed  Google Scholar 

  33. Liao Q, Yip L, Chow MYT, Chow SF, Chan HK, Kwok PCL, Lam JKW. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharm. 2019;560:144–54.

    Article  CAS  PubMed  Google Scholar 

  34. Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu C, Pan X, Wu C. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci Rep. 2017;7:46517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Yue X, Cui Y, Zhao Z, Huang Y, Cai S, Wang G, Wang W, Hugh S, Pan X, Wu C, Tan W. A systematic safety evaluation of nanoporous mannitol material as a dry-powder inhalation carrier system. J Pharm Sci. 2020;109:1692–702.

    Article  CAS  PubMed  Google Scholar 

  36. Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm. 2021;167:116–26.

    Article  CAS  PubMed  Google Scholar 

  37. Varun N, Ghoroi C. Engineered inhalable micro-balloon shaped drug particles for carrier-free dry powder inhalation (DPI) application. Powder Technol. 2022;408:117705.

    Article  CAS  Google Scholar 

  38. Pham D, Fattal E, Ghermani N, Guiblin N, Tsapis N. Formulation of pyrazinamide-loaded large porous particles for the pulmonary route: avoiding crystal growth using excipients. Int J Pharm. 2013;454:668–77.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou M, Shen L, Lin X, Hong Y, Feng Y. Design and pharmaceutical applications of porous particles. RSC Adv. 2017;7:39490.

    Article  CAS  Google Scholar 

  40. Healy AM, Amaro MI, Paluch KJ, Tajbar L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014;75:32–52.

    Article  CAS  PubMed  Google Scholar 

  41. Chakravarty P, Famili A, Nagapudi K, Al-Sayah MA. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems. Pharmaceutics. 2019;11:629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Usmani OS, Roche N, Jenkins M, Stjepanovic N, Mack P, Backer WD. Consistent pulmonary drug delivery with whole lung deposition using the aerosphere inhaler: a review of the evidence. Int J Chron Obstruct Pulmon Dis. 2021;16:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rabe KF. GFF MDI for the improvement of lung function in COPD –a look at the PINNACLE-1 and PINNACLE-2 data and beyond. Expert Rev Clin Pharmacol. 2017;10:685–98.

    Article  CAS  PubMed  Google Scholar 

  44. Rennard S, Fogarty C, Reisner C, Fernandez C, Fischer T, Golden M, Rose E, Darken P, Tardie G, Orevillo C. Randomized study of the safety, pharmacokinetics, and bronchodilatory efficacy of a proprietary glycopyrronium metered-dose inhaler in study patients with chronic obstructive pulmonary disease. BMC Pulm Med. 2014;14:118.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferguson GT, Hickey AJ, Dwivedi S. Co-suspension delivery technology in pressurized metered-dose inhalers for multi-drug dosing in the treatment of respiratory diseases. Respir Med. 2018;134:16–23.

    Article  PubMed  Google Scholar 

  46. Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology - assisted metered - dose inhalers (MDIs) for high - performance pulmonary drug delivery applications. Pharm Res. 2022;39:2831. https://doi.org/10.1007/s11095-022-03286-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taylor G, Warren S, Dwivedi S, Sommerville M, Mello L, Orevillo C, Maes A, Martin UJ, Usmani OS. Gamma scintigraphic pulmonary deposition study of glycopyrronium/ formoterol metered dose inhaler formulated using co-suspension delivery technology. Eur J Pharm Sci. 2018;111:450–7.

    Article  CAS  PubMed  Google Scholar 

  48. Quinn D, Seale JP, Reisner C, Fischer T, Golden M, Thomas M, Tardie G, Orevillo C. A randomized study of formoterol fumarate in a porous particle metered-dose inhaler in patients with moderate-to-severe COPD. Respir Med. 2014;108:1327–35.

    Article  PubMed  Google Scholar 

  49. Zhu L, Li M, Liu X, Jin Y. Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega. 2017;2:2273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanojia N, Singh S, Singh J, Sharma N, Grewal AS, Rani L, Thapa K, Arora S. Recent advancements and applications of inhalable microparticles based drug delivery systems in respiratory disorders. Biointerface Res Appl Chem. 2021;11:10099–118.

    CAS  Google Scholar 

  51. Mangal S, Gao W, Li T, Zhou Q. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38:782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kemeny NE, Niedzwiecki D, Hollis DR, Lenz HJ, Warren RS, Naughton MJ, et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol. 2006;24:1395–403.

    Article  CAS  PubMed  Google Scholar 

  53. Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Investig New Drugs. 2004;22:27–37.

    Article  CAS  Google Scholar 

  54. Markman M, Cleary S, Pfeifle C, Howell SB. Cisplatin administered by the intracavitary route as treatment for malignant mesothelioma. Cancer. 1986;58:18–21.

    Article  CAS  PubMed  Google Scholar 

  55. Duvillard C, Romanet P, Cosmidis A, Beaudouin N, Chauffert B. Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors. Ann Otol Rhinol Laryngol. 2004;113:229–33.

    Article  PubMed  Google Scholar 

  56. Markman M. An update on the use of intraperitoneal chemotherapy in the management of ovarian cancer. Cancer J. 2009;15:105–9.

    Article  CAS  PubMed  Google Scholar 

  57. Markman M, Reichman B, Hakes T, Rubin S, Lewis JL Jr, Jones W, et al. Evidence supporting the superiority of intraperitoneal cisplatin compared to intraperitoneal carboplatin for salvage therapy of small- volume residual ovarian cancer. Gynecol Oncol. 1993;50:100–4.

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Jansen JA, Yang F. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications – a mini review. Front Chem. 2019;7:258.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patel B, Gupta N, Ahsan F. Low-molecular-weight heparin (LMWH)–loaded large porous PEG-PLGA particles for the treatment of asthma. J Aerosol Med Pulm Drug Deliv. 2014;27:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnol. 2022;20:101.

    Article  CAS  Google Scholar 

  61. Pham D, Grégoire N, Couet W, Gueutin C, Fattal E, Tsapis N. Pulmonary delivery of pyrazinamide-loaded large porous particles. Eur J Pharm Biopharm. 2015;94:241–50.

    Article  CAS  PubMed  Google Scholar 

  62. Weers JG, Bell J, Chan HK, et al. Pulmonary formulations: what remains to be done? J Aerosol Med Pulm Drug Deliv. 2010;2:S5–2.

    Article  Google Scholar 

  63. Rowsell JLC, Yagli OM. Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mat. 2004;73:3–14.

    Article  CAS  Google Scholar 

  64. Zhou Y, Niu B, Wu B, Luo S, Fu J, Zhao Y, Quan G, Pan X, Wu C. A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility. Acta Pharm Sin B. 2020;10(12):2404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emmi G, Silvestri E, Squatrito D, et al. Thrombosis in vasculitis: from pathogenesis to treatment. Thromb J. 2015;13:1–10.

    Article  CAS  Google Scholar 

  66. Mackman N, Bergmeier W, Stouffer GA, Weitz JI. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19:333–52.

    Article  CAS  PubMed  Google Scholar 

  67. Qi Y, Zhao G, Liu D, Shriver Z, Sundaram M, Sengupta S, Venkataraman G, Langer R, Sasisekharan R. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci. 2004;101:9867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in mycobacterium tuberculosis. J Appl Microbiol. 2019;128:1547–67.

    Article  PubMed  Google Scholar 

  69. Contreras LG, Sung J, Ibrahim M, Elbert K, Edwards D, Hickey A. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of Guinea pigs. Mol Pharm. 2015;12:2642–50.

    Article  Google Scholar 

  70. Cai Y, Xu M, Yuan M, Liu Z, Yuan W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine. 2014;9:3527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release. 2006;112:167–74.

    Article  CAS  PubMed  Google Scholar 

  72. Bosquillon C, Préat V, Vanbever R. Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J Control Release. 2004;96:233–44.

    Article  CAS  PubMed  Google Scholar 

  73. Koushik K, Dhanda DS, Cheruvu NPS, Kompella UB. Pulmonary delivery of deslorelin: large-porous PLGA particles and HPßCD complexes. Pharm Res. 2004;21:1119–26.

    Article  CAS  PubMed  Google Scholar 

  74. Kuriakose A, Hu W, Nguyen KT, Menon JU. Scaffold-based lung tumor culture on porous PLGA microparticle substrates. PLoS One. 2019;14:e0217640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh A, Malviya R, Sharma PK. Pulmonary drug delivery system: a novel approach for drug delivery. Curr Drug Ther. 2011;6:137–51.

    Article  CAS  Google Scholar 

  76. Chaurasiya B, Zhao Y. Dry powder for pulmonary delivery: a comprehensive review. Pharmaceutics. 2021;13:31.

    Article  CAS  Google Scholar 

  77. Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 2020;10:339–53.

    Article  CAS  PubMed  Google Scholar 

  78. Labiris NR, Dolovich MB. Pulmonary drug delivery part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim CS. Physiological factors affecting lung deposition. J Aerosol Med Pulm. 2021;34:147–54.

    Article  CAS  Google Scholar 

  80. Zara DL, Sun F, Zhang F, Franek F, Sivars KB, Horndahl J, Bates S, Brännström M, Ewing P, Quayle MJ, Petersson G, Folestad S, JRV O. Controlled pulmonary delivery of carrier-free budesonide dry powder by atomic layer deposition. ACS Nano. 2021;15:6684–98.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov. 2015;20:380–9.

    CAS  Google Scholar 

  82. Gupta V, Davis M, Hope-Weeks LJ, Ahsan F. PLGA microparticles encapsulating prostaglandin E1-hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) complex for the treatment of pulmonary arterial hypertension (PAH). Pharm Res. 2011;28:1733–49.

    Article  CAS  PubMed  Google Scholar 

  83. Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26:1847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, Lee KC, Youn YS. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013;34:6444–53.

    Article  CAS  PubMed  Google Scholar 

  85. Thananukul K, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev. 2021;174:425–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerapol Srichana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawatdee, S., Changsan, N., Srichana, T., Nanjwade, B. (2023). Porous Particle Technology: Novel Approaches to Deep Lung Delivery. In: Mehta, P.P., Dhapte -Pawar, V. (eds) Pulmonary Drug Delivery Systems: Material and Technological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1923-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1923-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1922-2

  • Online ISBN: 978-981-99-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics