Skip to main content

Cellulose and Its Composites in Textiles and Food Industry

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Abstract

The usage of synthetic materials has increased environmental contamination to critical levels in recent decades. It will be difficult to restore the eco-equilibrium system’s without boosting the usage of natural, environmentally favorable chemicals. The usage of renewable cellulose may help the environment in a substantial way, both directly and indirectly. Because cellulose is a biodegradable, non-toxic, and renewable raw material, its value is linked to sustainable development. Cellulose materials are utilized in a variety of applications in both the home and the workplace. In the food, pharmaceutical, materials, and textile sectors, cellulose, and its composites have long been regarded as critical raw materials. Researchers are very interested in cellulose research in order to produce new goods and to live a comfortable and safe life. This chapter will focus on the most recent cellulose-based materials, their properties, and their applications in the textile and food industries. Future difficulties, research requirements, and viewpoints will all be thoroughly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr Polym 71, 343–364 (2008)

    Article  CAS  Google Scholar 

  2. Sundarraj, A.A., Ranganathan, T.V.: A review on cellulose and its utilization from agro-industrial waste. Drug Invent Today 10, 89–94 (2018)

    Google Scholar 

  3. Edwards, J.V., Buschle-Diller, G., Goheen, S.C.: Modified fibers with medical and specialty applications. Modif Fibers with Med Spec Appl (2006). https://doi.org/10.1007/1-4020-3794-5

    Article  Google Scholar 

  4. Nguyen, L.H., Naficy, S., Chandrawati, R., Dehghani, F.: Nanocellulose for Sensing Applications. Adv Mater Interfaces (2019). https://doi.org/10.1002/ADMI.201900424

    Article  Google Scholar 

  5. Zhao, Y., Simonsen, J., Cavender, G., Jung, J.F.L.: Nano-cellulose coatings to prevent damage in foodstuffs. US Pat. 20,140,272,013 A1 (2014)

    Google Scholar 

  6. Kim, H.C., Mun, S., Ko, H.U., Zhai, L., Kafy, A., Kim, J.: Renewable smart materials. Smart Mater Struct (2016). https://doi.org/10.1088/0964-1726/25/7/073001

    Article  Google Scholar 

  7. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front Chem (2020). https://doi.org/10.3389/FCHEM.2020.00392

    Article  Google Scholar 

  8. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chemie - Int Ed 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  9. Choudhury, M.J., Khan, G.M.A.: Utilization of sawmill by-product for making cellulose and its valuable derivatives. Biomass Bioenergy Appl (2015). https://doi.org/10.1007/978-3-319-07578-5_9

    Article  Google Scholar 

  10. Shi, Z., Zhang, Y., Phillips, G.O., Yang, G.: Utilization of bacterial cellulose in food. Food Hydrocoll 35, 539–545 (2014)

    Article  CAS  Google Scholar 

  11. Azeredo, H.M.C., Barud, H., Farinas, C.S.: Bacterial cellulose as a raw material for food and food packaging applications.https://doi.org/10.3389/fsufs.2019.00007 (2019)

  12. Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromol 8, 1–12 (2007)

    Article  CAS  Google Scholar 

  13. Ciolacu D, Popa VI (2010) Cellulose allomorphs - Overview and perspectives.

    Google Scholar 

  14. Giese, M., Blusch, L.K., Khan, M.K., MacLachlan, M.J.: Functional materials from cellulose-derived liquid-crystal templates. Angew Chemie - Int Ed 54, 2888–2910 (2015)

    Article  CAS  Google Scholar 

  15. Gao, H., Duan, B., Lu, A., Deng, H., Du, Y., Shi, X., Zhang, L.: Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll 79, 473–481 (2018)

    Article  CAS  Google Scholar 

  16. Yilmaz, N.D.: Agro-residual fibers as potential reinforcement elements for biocomposites. In: Thakur, V.K. (ed) Lignocellul. Polym. Compos. Process. Charact. Prop. Wiley Scrivener, pp. 233–270 (2015)

    Google Scholar 

  17. Woodings, C.: Fibers, regenerated cellulose. In: Kirk-Othmer Encycl. Chem. Technol. pp 246–285 (2003)

    Google Scholar 

  18. Chen, J.: Synthetic textile fibers: regenerated cellulose fibers. In: Text. Fash. Mater. Des. Technol. Elsevier Ltd, pp 79–95 (2015)

    Google Scholar 

  19. Kumari, A., Khurana, K.: Regenerated cellulose-based denim fabric for tropical regions: an analytical study on making denim comfortable. J Text 2016, 1–10 (2016)

    Article  Google Scholar 

  20. Kumar, S., Chatterjee, K.: Designing and development of denim fabrics: Part 1 – study the effect of fabric parameters on the fabric characteristics for women’s wear. J. Text Sci. Eng. https://doi.org/10.4172/2165-8064.1000265 (2016)

  21. Raina, M.A., Gloy, Y.S., Gries, T.: Weaving technologies for manufacturing denim. Denim Manuf Finish Appl (2015). https://doi.org/10.1016/B978-0-85709-843-6.00006-8

    Article  Google Scholar 

  22. Adanur, S., Qi, J.: Property analysis of Denim Fabrics made on air-jet weaving machine part I: experimental system and tension measurements. Text Res J 78, 3–9 (2008)

    Google Scholar 

  23. McLoughlin, J., Hayes, S., Paul, R.: Cotton fibre for denim manufacture. Denim Manuf Finish Appl (2015). https://doi.org/10.1016/B978-0-85709-843-6.00002-0

    Article  Google Scholar 

  24. Behera, B.K., Chand, S., Singh, T.G., Rathee, P.: Sewability of denim. Int. J. Cloth Sci. Technol. 9, 128–140 (1997)

    Article  Google Scholar 

  25. Harlapur, S.F., Sreenivasaiah, V.: Effect of enzyme washing on properties of denim fabric. Int. J. Eng. Res. V6, 38–39 (2017)

    Article  Google Scholar 

  26. Rahman, M.: Applications of the digital technologies in textile and fashion manufacturing industry. Tech. Rom. J. Appl. Sci. 3:114–127 (2021)

    Google Scholar 

  27. Lenz, J., Schurz, J., Wrentschur, E.: Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym. Sci. 271, 460–468 (1993)

    Article  CAS  Google Scholar 

  28. Sinha, F., Sinha, S.: Woollen textile production and KVIC in hill areas development. Econ Polit Wkly 19, 1544–1548 (1984)

    Google Scholar 

  29. Sonee, N., Pant, S.: A comparative study on the effect of finishing agents on stiffness and drape of Khadi fabric. J Eng Res Appl www.ijera.com 4, 47–52 (2014)

  30. Venkatesh, J., Deekshitha, G.: Pathways to make “Khadi” sustainable. Int. J. Sci. Res. Rev. 8, 3150–3160 (2019)

    Google Scholar 

  31. Seif, M.: Investigating the seam slippa ge of satin fabrics (2019)

    Google Scholar 

  32. Çeven, E.K., Özdemir, Ö.: Evaluation of Chenille Yarn abrasion behavior with abrasion tests and image analysis. Text Res J 76, 315–321 (2006)

    Article  Google Scholar 

  33. Ismail, S.: Cotton Cloth: Diversified applications beyond fashion and wearable cloth. Curr. Trends Fash. Technol. Text. Eng. (2018). https://doi.org/10.19080/ctftte.2018.02.555587

  34. Yousuf Mohammad Anwarul Azim, A., Sowrov, K., Ahmed, M., Rakib Ul Hasan, H.M., Abdullah Al Faruque, M.: Effect of elastane on single Jersey Knit fabric properties-physical & dimensional properties. Int. J. Text. Sci. 3, 12–16 (2014)

    Google Scholar 

  35. Yang, J., Miao, X., Yang, J.: Research on several factors affecting the structural stability of lace material and clothing effect and its solutions. 17, 198–200 (2013)

    Google Scholar 

  36. Divya, R., Manonmani, G.: A study on the thermal properties Of 100 % Bamboo. 5, 71–79 (2018)

    Google Scholar 

  37. Gnanapriya, J.J.: Properties of modal fabric after formic acid treatment. J. Environ. Sci. Comput. Sci. Eng. Technol. 5, 31–42 (2017)

    Google Scholar 

  38. Moses, J., Gnana Priya, K.: Comparative study between modal and cotton after formic acid treatment. Int. J. Innov. Res. Sci. 6, 19679–19688 (2017)

    Google Scholar 

  39. Inexpensive fashion by using muslin 8, 1324–1334 (2021)

    Google Scholar 

  40. Zhang, H., Yao, Y., Kim, T.: Swelling and deweaving of cotton muslin fabric in aqueous NaOH solution.

    Google Scholar 

  41. Saba, N., Jawaid, M.: Recent advances in nanocellulose-based polymer nanocomposites. Cellul. Nanofibre Compos. Prod. Prop. Appl., 89–112 (2017)

    Google Scholar 

  42. Wang, J., He, J., Ma, L., Zhang, Y., Shen, L., Xiong, S., Li, K., Qu, M.: Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem Eng J 390, 124508 (2020)

    Article  Google Scholar 

  43. Kim, J.H., Mun, S., Ko, H.U., Yun, G.Y., Kim, J.: Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology (2014). https://doi.org/10.1088/0957-4484/25/9/092001

    Article  Google Scholar 

  44. Horrocks, A.R.: Flame-retardant finishing of textiles. Rev. Prog. Color Relat. Top. 16, 62–101 (1986)

    CAS  Google Scholar 

  45. Tayeb, P., Tayeb, A.H.: Nanocellulose applications in sustainable electrochemical and piezoelectric systems: a review. Carbohydr. Polym. (2019). https://doi.org/10.1016/J.CARBPOL.2019.115149

  46. Ummartyotin, S., Manuspiya, H.: An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery. Renew. Sustain. Energy Rev. 50, 204–213 (2015)

    Article  CAS  Google Scholar 

  47. Cao, G., Gao, X., Wang, L., Cui, H., Lu, J., Meng, Y., Xue, W., Cheng, C., Tian, Y., Tian, Y.: Easily synthesized polyaniline@cellulose nanowhiskers better tune network structures in ag-based adhesives: Examining the improvements in conductivity, stability, and flexibility. Nanomaterials 9, 1542 (2019)

    Article  CAS  Google Scholar 

  48. Bartkowiak, G., Dabrowska, A., Greszta, A.: Development of smart textile materials with shape memory alloys for application in protective clothing. Materials (Basel) 13, 1–17 (2020)

    Article  Google Scholar 

  49. Rubacha, M., Zieba, J.: Magnetic textile elements. Fibres Text East Eur. 14, 49–53 (2006)

    CAS  Google Scholar 

  50. Carrillo, F., Colom, X., Cañavate, X.: Properties of regenerated cellulose lyocell fiber-reinforced composites. J. Reinf. Plast Compos. 29, 359–371 (2010)

    Article  CAS  Google Scholar 

  51. Panyakaew, S., Fotios, S.: New thermal insulation boards made from coconut husk and bagasse. Energy Build. 43, 1732–1739 (2011)

    Article  Google Scholar 

  52. Arenas, J.P., Rebolledo, J., Del Rey, R., Alba, J.: Sound insulation material. BioResources 9, 6227–6240 (2014)

    CAS  Google Scholar 

  53. Alam, K.S., Fatema-Tuj-Johora, M., Khan, G.M.A.: Fundamental aspects and developments in cellulose-based membrane technologies for virus retention: a review. J. Environ. Chem. Eng. 9, 106401 (2021)

    Article  CAS  Google Scholar 

  54. Shankar, S., Oun, A.A., Rhim, J.W.: Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int. J. Biol. Macromol. 107, 17–27 (2018)

    Article  CAS  Google Scholar 

  55. Li, M., Farooq, A., Jiang, S., Zhang, M., Mussana, H., Liu, L.: Functionalization of cotton fabric with ZnO nanoparticles and cellulose nanofibrils for ultraviolet protection. Text Res. J. 91, 2303–2314 (2021)

    Article  CAS  Google Scholar 

  56. Tang, Y., Zhang, X., Zhao, R., Guo, D., Zhang, J.: Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr. Polym. 197, 128–136 (2018)

    Article  CAS  Google Scholar 

  57. Mikaeili, F., Gouma, P.I.: Super water-repellent cellulose acetate mats. Sci. Rep. 8, 1–8 (2018)

    Article  Google Scholar 

  58. Diaa, M., Hassabo, A.G.: Self-cleaning properties of cellulosic fabrics (a review). Biointerface Res. Appl. Chem. 12, 1847–1855 (2022)

    CAS  Google Scholar 

  59. Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y., Xiao, H.: Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5, 1–15 (2020)

    Article  CAS  Google Scholar 

  60. Noorbakhsh-Soltani, S.M., Zerafat, M.M., Sabbaghi, S.: A comparative study of gelatin and starch-based nano-composite fi lms modi fi ed by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 189, 48–55 (2018)

    Google Scholar 

  61. Orasugh, J.T., Saha, N.R., Rana, D., Sarkar, G., Mollick, M.M.R., Chattoapadhyay, A., Mitra, B.C., Mondal, D., Ghosh, S.K., Chattopadhyay, D.: Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: A novel material with potential for application in packaging and transdermal drug delivery system. Ind. Crops Prod. 112, 633–643 (2018)

    Article  CAS  Google Scholar 

  62. Pan, Y., Xiao, H., Cai, P., Colpitts, M.: Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydr. Polym. 135, 94–100 (2016)

    Article  CAS  Google Scholar 

  63. Saha, N.R., Roy, I., Sarkar, G., Bhattacharyya, A., Das, R., Rana, D., Banerjee, R., Paul, A.K., Mishra, R., Chattopadhyay, D.: Development of active packaging material based on cellulose acetate butyrate/polyethylene glycol/aryl ammonium cation modified clay. Carbohydr. Polym. 187, 8–18 (2018)

    Article  CAS  Google Scholar 

  64. Ahmadzadeh, S., Nasirpour, A., Keramat, J., Hamdami, N., Behzad, T., Desobry, S.: Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloids Surf. A Physicochem. Eng. Asp. 468, 201–210 (2015)

    Article  CAS  Google Scholar 

  65. Yu, H.Y., Yang, X.Y., Lu, F.F., Chen, G.Y., Yao, J.M.: Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Carbohydr. Polym. 140, 209–219 (2016)

    Article  CAS  Google Scholar 

  66. Zhao, S.W., Zheng, M., Zou, X.H., Guo, Y., Pan, Q.J.: Self-Assembly of Hierarchically Structured Cellulose@ZnO Composite in Solid-Liquid Homogeneous Phase: Synthesis, DFT Calculations, and Enhanced Antibacterial Activities. ACS Sustain. Chem. Eng. 5, 6585–6596 (2017)

    Article  CAS  Google Scholar 

  67. Khosravi, A., Fereidoon, A., Khorasani, M.M., Naderi, G., Ganjali, M.R., Zarrintaj, P., Saeb, M.R., Gutiérrez, T.J.: Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: a critical review. Food Packag. Shelf Life 23, 100429 (2020)

    Article  Google Scholar 

  68. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., Goswami, S.: Commercial application of cellulose nano-composites – a review. Biotechnol. Reports 21, e00316 (2019)

    Article  Google Scholar 

  69. Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., Zhang, Y.: Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydr. Polym. 211, 49–56 (2019)

    Article  CAS  Google Scholar 

  70. Bharimalla, A.K., Deshmukh, S.P., Vigneshwaran, N., Patil, P.G., Prasad, V.: Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. 56, 805–823. http://dx.doi.org/10.1080/03602559.2016.1233281 (2017)

  71. Penjumras, P., Rahman, R.A.: Migration Study of Antioxidant in Durian Rind Cellulose Reinforced Poly(Lactic Acid)(PLA) Biocomposites and its Effect on Oxidative Stability of Edible Oil. Solid State Phenom 278, 89–95 (2018)

    Article  Google Scholar 

  72. Zhao, G., Lyu, X., Lee, J., Cui, X., Chen, W.N.: Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packag Shelf Life 21, 100345 (2019)

    Article  Google Scholar 

  73. Ghaderi, M., Mousavi, M., Yousefi, H., Labbafi, M.: All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr. Polym. 104, 59–65 (2014)

    Article  CAS  Google Scholar 

  74. Reddy, J.P., Rhim, J.W.: Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr. Polym. 110, 480–488 (2014)

    Article  CAS  Google Scholar 

  75. Rachtanapun, P., Kumthai, S., Mulkarat, N., Pintajam, N., Suriyatem, R.: Value added of mulberry paper waste by carboxymethylation for preparation a packaging film. IOP Conf. Ser. Mater. Sci. Eng. 87, 012081 (2015)

    Article  Google Scholar 

  76. Suriyatem, R., Auras, R.A., Rachtanapun, P.: Utilization of Carboxymethyl cellulose from durian rind agricultural waste to improve physical properties and stability of rice starch-based film. J. Polym. Environ. 272(27), 286–298 (2018)

    Google Scholar 

  77. Gonc, J., Oliveira, D., Beatriz, F., Albiero, R., Buranelo, M., Henriette, E., Cordeiro, M.: Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils : a new functional material for food packaging applications. https://doi.org/10.1007/s10570-021-03945-0 (2021)

  78. Bhardwaj, U., Dhar, P., Kumar, A., Katiyar, V.: Polyhydroxyalkanoates (PHA)-cellulose based nanobiocomposites for food packaging applications. ACS Symp. Ser. 1162, 275–314 (2014)

    Article  CAS  Google Scholar 

  79. Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., Rounsevell, M.D.A.: Losses, in efficiencies and waste in the global food system. Agric. Syst. 153, 190–200 (2017)

    Article  Google Scholar 

  80. Mu, R.J., Yuan, Y., Wang, L., Ni, Y., Li, M., Chen, H., Pang, J.: Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocoll. 76, 42–48 (2018)

    Article  CAS  Google Scholar 

  81. Zhang, W., He, X., Li, C., Zhang, X., Lu, C., Zhang, X., Deng, Y.: High performance poly (vinyl alcohol)/cellulose nanocrystals nanocomposites manufactured by injection molding. Cellulose 211(21), 485–494 (2013)

    Google Scholar 

  82. Ye, Q., Georges, N., Selomulya, C.: Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends Food Sci. Technol. 78, 167–179 (2018)

    Article  CAS  Google Scholar 

  83. Abo-Elseoud, W.S., Hassan, M.L., Sabaa, M.W., Basha, M., Hassan, E.A., Fadel, S.M.: Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int. J. Biol. Macromol. 111, 604–613 (2018)

    Article  CAS  Google Scholar 

  84. Singhsa, P., Narain, R., Manuspiya, H.: Bacterial cellulose nanocrystals (BCNC) preparation and characterization from three bacterial cellulose sources and development of functionalized BCNCS as nucleic acid delivery systems. ACS Appl. Nano Mater. 1, 209–221 (2018)

    Article  CAS  Google Scholar 

  85. Arancibia, C., Miranda, M., Matiacevich, S., Troncoso, E.: Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocoll. 73, 243–254 (2017)

    Article  CAS  Google Scholar 

  86. Paximada, P., Koutinas, A.A., Scholten, E., Mandala, I.G.: Effect of bacterial cellulose addition on physical properties of WPI emulsions Comparison with common thickeners. Food Hydrocoll. 54, 245–254 (2016)

    Article  CAS  Google Scholar 

  87. Saha, D., Bhattacharya, S.: Hydrocolloids as thickening and gelling agents in food: a critical review. J. Food Sci. Technol. 476(47), 587–597 (2010)

    Google Scholar 

  88. Lu, J., Luo, Z., Xiao, Z.: Effect of lysine and glycine on pasting and rheological properties of maize starch. Food Res. Int. 49, 612–617 (2012)

    Article  CAS  Google Scholar 

  89. Sanchez-Salvador, J.L., Balea, A., Monte, M.C., Blanco, A., Negro, C.: Pickering emulsions containing cellulose microfibers produced by mechanical treatments as stabilizer in the food industry. Appl. Sci. 9, 359 (2019)

    Google Scholar 

  90. Winuprasith, T., Suphantharika, M.: Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocoll. 43, 690–699 (2015)

    Article  CAS  Google Scholar 

  91. Pornsuda Choublab, T.W.: Storage stability of mayonnaise using mangosteen nanofibrillated cellulose as a single emulsifier. J. Food Sci. Agric. Technol. 4, 59–66 (2018)

    Google Scholar 

  92. Kasiri, N., Fathi, M.: Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023–1031 (2018)

    Article  CAS  Google Scholar 

  93. Costa, A.L.R., Gomes, A., Tibolla, H., Menegalli, F.C., Cunha, R.L.: Cellulose nanofibers from banana peels as a Pickering emulsifier: high-energy emulsification processes. Carbohydr. Polym. 194, 122–131 (2018)

    Article  CAS  Google Scholar 

  94. Tamayo Tenorio, A., Gieteling, J., Nikiforidis, C.V., Boom, R.M., van der Goot, A.J.: Interfacial properties of green leaf cellulosic particles. Food Hydrocoll. 71, 8–16 (2017)

    Article  CAS  Google Scholar 

  95. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A.A., Mandala, I.: Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll. 53, 225–232 (2016)

    Article  CAS  Google Scholar 

  96. Zhai, X., Lin, D., Liu, D., Yang, X.: Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res. Int. 103, 12–20 (2018)

    Article  CAS  Google Scholar 

  97. Gómez, C.H., Serpa, A., Gañán, P., Castro, C., Vélez, L., Zuluaga, R.: Vegetable nanocellulose in food science: a review. Food Hydrocoll. (2016). https://doi.org/10.1016/j.foodhyd.2016.01.023

    Article  Google Scholar 

  98. Slavin, J.L., Savarino, V., Paredes-Diaz, A., Fotopoulos, G.: A review of the role of soluble fiber in health with specific reference to wheat dextrin. J. Int. Med. Res. 37, 1–17 (2009)

    Article  CAS  Google Scholar 

  99. Alzate-Arbeláez, A.F., Dorta, E., López-Alarcón, C., Cortés, F.B., Rojano, B.A.: Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: a natural food additive with antioxidant properties. Food Chem. 294, 503–517 (2019)

    Article  Google Scholar 

  100. Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., Wang, Y.: Using cellulose nanofibers and its palm oil Pickering emulsion as fat substitutes in emulsified sausage. J. Food Sci. 83, 1740–1747 (2018)

    Article  CAS  Google Scholar 

  101. Andrade, D.R.M., Mendonça, M.H., Helm, C.V., Magalhães, W.L.E., de Muniz, G.I.B., Kestur, S.G.: Assessment of nano cellulose from peach palm residue as potential food additive: Part II: preliminary studies. J. Food Sci. Technol. 52(9), 5641–5650 (2014)

    Google Scholar 

  102. Salma Mohamad, Y. , Nor Fazelin, M.Z., Babji, A.S., Kamaruzaman, N.: Utilization of celluloses from pomelo (Citrus grandis) albedo as functional ingredient in meat marination. Int. Proc. Chem. Biol. Environ. Eng. 92, 18–22 (2016)

    Google Scholar 

  103. Sebayang, F., Sembiring, H.: Synthesis of CMC from palm midrib cellulose as stabilizer and thickening agent in food. Orient. J. Chem. 33, 519–530 (2017)

    Article  CAS  Google Scholar 

  104. Kwon, G.-J., Han, S.-Y., Park, C.-W., Park, J.-S., Lee, E.-A., Kim, N.-H., Alle, M., Bandi, R., Lee, S.-H.: Adsorption characteristics of Ag nanoparticles on cellulose nanofibrils with different chemical compositions. Polymers (Basel) 12, 164 (2020)

    Article  CAS  Google Scholar 

  105. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M.: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 87, 1596–1605 (2012)

    Article  CAS  Google Scholar 

  106. Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66, 2776–2784 (2006)

    Article  CAS  Google Scholar 

  107. de Oliveira Filho, J.G., Albiero, B.R., Calisto, Í.H., Bertolo, M.R.V., Oldoni, F.C.A., Egea, M.B., Bogusz Junior, S., de Azeredo, H.M.C., Ferreira, M.D.: Bio-nanocomposite edible coatings based on arrowroot starch/cellulose nanocrystals/carnauba wax nanoemulsion containing essential oils to preserve quality and improve shelf life of strawberry. Int. J. Biol. Macromol. 219, 812–823 (2022)

    Article  CAS  Google Scholar 

  108. Aguilar-Sanchez, A., Jalvo, B., Mautner, A., Rissanen, V., Kontturi, K.S., Abdelhamid, H.N., Tammelin, T., Mathew, A.P.: Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating. RSC Adv. 11, 6859–6868 (2021)

    Article  CAS  Google Scholar 

  109. Gebauer, D., Oliynyk, V., Salajkova, M., Sort, J., Zhou, Q., Bergström, L., Salazar-Alvarez, G.: A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale 3, 3563–3566 (2011)

    Article  CAS  Google Scholar 

  110. Arserim-Uçar, D.K., Korel, F., Liu, L., Yam, K.L.: Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chem. 336, 127597 (2021)

    Article  Google Scholar 

  111. Bai, H., Li, Z., Zhang, S., Wang, W., Dong, W.: Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 200, 468–476 (2018)

    Article  CAS  Google Scholar 

  112. Arancibia, C., Navarro-Lisboa, R., Zúñiga, R.N., Matiacevich, S.: Application of CMC as thickener on nanoemulsions based on olive oil: physical properties and stability. Int. J. Polym. Sci. 2016, 6280581 (2016)

    Article  Google Scholar 

  113. Deepa, B., Abraham, E., Cordeiro, N., et al.: Nanofibrils vs nanocrystals bio-nanocomposites based on sodium alginate matrix: an improved-performance study. Heliyon 6, 1–9 (2020)

    Article  Google Scholar 

  114. Lee, K.-Y., Blaker, J., Murakami, R., Heng, J.Y.Y., Bismarck, A.: Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 30, 452–46 (2014)

    Google Scholar 

  115. Soeiro, V.S., Tundisi, L.L., Novaes, L.C.L., et al.: Production of bacterial cellulose nanocrystals via enzymatic hydrolysis and evaluation of their coating on alginate particles formed by ionotropic gelation. Carbohydr. Polym. Technol. Appl. 2, 100155 (2021)

    CAS  Google Scholar 

  116. Sherwood Jouko, B.E., Virtanen, J.: New cellulosic materials for incorporation into food products and methods of making same. pp 1–36 (1996)

    Google Scholar 

  117. Hu, L., Xu, W., Gustafsson, J., et al.: Water-soluble polysaccharides promoting production of redispersible nanocellulose. Carbohydr. Polym. 297, 119976 (2022)

    Article  CAS  Google Scholar 

  118. Criado, P., Fraschini, C., Salmieri, S., Lacroix, M.: Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Res. Int. 132, 109110 (2020)

    Article  CAS  Google Scholar 

  119. Parid, D.M., Rahman, N.A.A., Baharuddin, A.S., Kadir Basha, R.P., Mohammed, M.A., Mat Johari, A., Abd Razak, S.Z.: Effects of carboxymethyl cellulose extracted from oil palm empty fruit bunch stalk fibres on the physical properties of low-fat ice cream. Food Res. 5, 1–7 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazi Md. Arifuzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, G.M.A. et al. (2023). Cellulose and Its Composites in Textiles and Food Industry. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_9

Download citation

Publish with us

Policies and ethics