Skip to main content

Earth’s Versatile Gift: Cellulose

  • Living reference work entry
  • First Online:
Handbook of Biomass

Abstract

Cellulose is a versatile natural polymer that plays a crucial role in the environment, industry, food, and medicine. This chapter provides an overview of the structure and properties of cellulose, its importance to the planet and human society, and its potential for future development. Cellulose has a unique ability to sequester carbon and mitigate the effects of climate change. It also serves as a raw material for various industrial applications, such as paper production, construction materials, and textiles, and offers several advantages over synthetic materials. Cellulose is an essential dietary fiber that aids in digestion and offers various health benefits. It also has medical applications, such as drug delivery and wound dressings. The sustainable development of cellulose-based materials is crucial for a sustainable future, and new products and technologies are continually being developed. This chapter examines the challenges and opportunities associated with developing cellulose-based products and their impact on the environment and human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M. Abdi, A. Almasian, M. Talaiepour, H. Khademieslam, The properties of lyocell fiber and its applications in textile products. Text. Sci. Cloth. Technol. 3(2), 18–23 (2019)

    Google Scholar 

  • S. Agrawal, K.K. Pandey, A review on the use of cellulose for insulation and building materials. J. Polym. Environ. 24(4), 367–376 (2016)

    Google Scholar 

  • M.O. Akintunde, B.C. Adebayo-Tayo, M.M. Ishola, A. Zamani, I.S. Horváth, Bacterial cellulose production from agricultural residues by two Komagataeibacter sp. strains. Bioengineered 13(4), 10010–10025 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.P. Alves, B. Medronho, A. Romano, M.G. Miguel, F. Antunes, B. Lindman, Cellulose-based materials for application in medicine. Curr. Med. Chem. 26(28), 5246–5275 (2019)

    Google Scholar 

  • H.M.C. Azeredo, K.W. Waldron, M.A. Ibrahim, Cellulose-based materials for sustainable packaging: A review. J. Food Eng. 196, 107–120 (2017)

    Google Scholar 

  • A. Azero, G.Z. Kyzas, D.N. Bikiaris, Recent advances on cellulose-based films for food packaging applications. Food Bioprocess Technol. 12(4), 505–523 (2019)

    Google Scholar 

  • E.S. Bakker, M.E. Ritchie, H. Olff, How grazing animals affect the impact of fire on vegetation: Ungulate grazing reduces fire-induced tree mortality and increases grass survival. Ecol. Lett. 9(7), 704–713 (2006)

    Google Scholar 

  • M.K. Bakri, M.R. Rahman, F.I. Chowdhury, Chapter 1 – Sources of cellulose, in Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose, ed. by M.R. Rahman, (Elsevier, Amsterdam, 2022), pp. 1–18

    Google Scholar 

  • D.N. Barman, J. Konar, S. Ghatak, M. Mandal, Development of hydrocolloid films for wound dressing application. Int. J. Biol. Macromol. 103, 1075–1083 (2017)

    Google Scholar 

  • T. Berglund et al., Cellulose: The sustainable wonder material. ACS Sustain. Chem. Eng. 6(1), 41–57 (2018)

    Google Scholar 

  • S.K. Bhatia, R. Gurav, T.R. Choi, H.R. Jung, S.Y. Yang, Y.H. Yang, et al., Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 101(8), 3077–3087 (2017)

    Google Scholar 

  • H. Blanco-Canqui, R. Lal, Soil and water conservation and quality of soil organic matter in the Great Plains of the United States. Soil Tillage Res. 94(2), 201–211 (2008)

    Google Scholar 

  • B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. Biogeosciences 7(6), 1915–1926 (2010)

    Article  CAS  Google Scholar 

  • R.K. Bordia, K.S. Iyer, S. Bhowmick, Bio-inspired ablative composites based on cellulose nanofibers and their nanocomposites: A review. Int. J. Biol. Macromol. 151, 882–892 (2020)

    Google Scholar 

  • M. Bringmann, L. Bergmann, M.T. Hauser, The role of microRNAs in cellulosic biomass production in plants. Biotechnol. J. 7(3), 323–342 (2012)

    Google Scholar 

  • G.C. Chen, W.P. Koh, J.M. Yuan, L.Q. Qin, R.M. van Dam, Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: Results from the Singapore Chinese Health Study and meta-analysis. Br. J. Nutr. 116(3), 572–584 (2016)

    Google Scholar 

  • J. Chen, H. Li, J. Zheng, L. Weng, H. Zhang, Cellulose-based wound dressings for advanced wound healing: State of the art and future perspectives. Carbohydr. Polym. 224, 115186 (2019)

    Google Scholar 

  • D.J. Cosgrove, Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6(11), 850–861 (2005)

    Article  CAS  PubMed  Google Scholar 

  • J.M. Dias, M.C.M. Alvim-Ferraz, C.M. Silva, A comprehensive review on the potential of lignocellulosic biomass as feedstock for biofuels production. Renew. Sust. Energ. Rev. 145, 111012 (2021)

    Google Scholar 

  • N. Duran, P.D. Marcato, Micro- and nanocapsules in medicine and cosmetics. Curr. Nanosci. 9(4), 452–464 (2013)

    Google Scholar 

  • H.J. Flint, E.A. Bayer, M.T. Rincon, R. Lamed, B.A. White, Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6(2), 121–131 (2008)

    Article  CAS  PubMed  Google Scholar 

  • J.A. Foley, R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, et al., Global consequences of land use. Science 309(5734), 570–574 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Z. Gao, Y. Guo, S. Liu, S. Zhang, Y. Zhang, Preparation of medium density fiberboard binder based on lignin/cellulose complex modified by polyethylene glycol. J. Mater. Sci. 52(17), 10244–10253 (2017)

    Google Scholar 

  • M.A. Gómez-García, Y. Tye, Fire and moisture resistance of cellulose-based insulation materials: A review. Fire Mater. 42(8), 819–832 (2018)

    Google Scholar 

  • B. Gopinath, V.M. Flood, G. Burlutsky, P. Mitchell, Consumption of dietary fiber and the risk of cardiovascular disease. J. Am. Coll. Cardiol. 73(9), 1179–1181 (2019)

    Google Scholar 

  • Grand View Research, Cellulose Market Size, Share & Trends Analysis Report By Product (Microcrystalline Cellulose, Cellulose Ethers, Cellulose Acetate), By Application (Food & Beverage, Pharmaceuticals, Cosmetics & Personal Care), And Segment Forecasts, Grand View Research, 2020–2027, (2020)

    Google Scholar 

  • M.G. Gronli, E.O. Rukke, Life cycle assessment of cellulose-based products, in Cellulose-Based Superabsorbent Hydrogels, (Springer, Cham, 2019), pp. 435–458

    Google Scholar 

  • Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  • L.S. Heath, R.A. Birdsey, Carbon trends in US forestlands: A context for the role of soils in forest carbon sequestration. Water Air Soil Pollut. 70(1–4), 443–455 (1993)

    Google Scholar 

  • N.C. Howarth, E. Saltzman, S.B. Roberts, M.A. McCrory, Dietary fiber and weight regulation. Nutr. Rev. 59(5), 129–139 (2001)

    Article  CAS  PubMed  Google Scholar 

  • T. Hua, X. Du, L. Lin, A review of the environmental benefits and drawbacks of paper recycling. J. Clean. Prod. 278, 123764 (2021)

    Google Scholar 

  • S. Jahan, M.R. Karim, N. Hasan, N.N. Rumpa, Applications of cellulose in cosmetics. J. Appl. Cosmetol. 36(1), 1–7 (2018)

    Google Scholar 

  • GE. Joaquín, H. Ana María, H. Beatriz, Á. María Dolores, JC. Francisco, C. Susana. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development, Food Hydrocolloids, (2019) 87:960–969.

    Google Scholar 

  • W.A. Jensen, F.B. Salisbury, Ultrastructure of cellulose microfibrils in charophycean green algae. II. Closterium acerosum. J. Phycol. 18(2), 161–174 (1982)

    Google Scholar 

  • N. Johar, I. Ahmad, A. Dufresne, Extraction, structure and properties of cellulose fibres and their derivatives. Carbohydr. Polym. 87(2), 963–979 (2012)

    Google Scholar 

  • S. Kalia, B.S. Kaith, I. Kaur, Cellulose-based fibers: A review of processing, properties, and applications. Polym. Compos. 32(7), 1262–1284 (2011)

    Google Scholar 

  • S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym. Eng. Sci. 54(4), 507–535 (2014)

    Google Scholar 

  • G. Kaur, A. Kumar, M. Thakur, S. Rani, Seaweed cellulose-based filter paper for pretreatment of seawater in reverse osmosis desalination. J. Water Process Eng. 38, 101557 (2020)

    Google Scholar 

  • H. Kim, I.H. Kim, K.T. Kim, M.S. Kim, J.H. Lee, Fabrication and characterization of cellulose nanofiber film for drug delivery. J. Pharm. Investig. 48(3), 241–248 (2018). https://doi.org/10.1007/s40005-018-0377-7

    Article  Google Scholar 

  • D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)

    Article  CAS  Google Scholar 

  • D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, et al., Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2018)

    Article  Google Scholar 

  • D. Lahiri, M. Nag, B. Dutta, A. Dey, T. Sarkar, S. Pati, H.A. Edinur, Z. Abdul Kari, N.H. Mohd Noor, R.R. Ray, Bacterial cellulose: Production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci. 22(23), 12984 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.C. Larsson, J. Virtamo, A. Wolk, Dietary fiber intake and risk of first stroke: A systematic review and meta-analysis. Stroke 44(5), 1360–1368 (2013)

    Article  Google Scholar 

  • N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90(2), 735–764 (2012)

    Article  CAS  PubMed  Google Scholar 

  • K.Y. Lee, J.J. Blaker, A. Bismarck, M.S. Shaffer, Cellulose nanofibers in electronics and bioelectronics. Adv. Sci. 6(24), 1901012 (2019)

    Google Scholar 

  • S. Magalhães, C. Fernandes, JFS Pedrosa, L. Alves, B. Medronho, PJT. Ferreira, MDG Rasteiro, Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers (Basel). (2023) 24;15(14): 3138. https://doi.org/10.3390/polym15143138

  • M. Majda, R. Bulut, C.T. McKee, P.D. Zavattieri, Multiscale modeling of cellulose nanocrystals: Reinforcing filler and effective mechanical properties. Langmuir 34(26), 7693–7708 (2018)

    Google Scholar 

  • J. Major, J. Lehmann, M. Rondon, C. Goodale, Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 16(4), 1366–1379 (2010)

    Article  Google Scholar 

  • A. Makhlof, Y. Tozuka, H. Takeuchi, Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Biopharm. 77(2), 270–276 (2011a)

    Google Scholar 

  • A. Makhlof, M. Werle, Y. Tozuka, H. Takeuchi, K. Mäder, Evaluation of drug release from hydrocolloid wound dressings. Int. J. Pharm. 416(1), 56–64 (2011b)

    Google Scholar 

  • Mordor Intelligence, Paper and Pulp Market – Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026), (2021)

    Google Scholar 

  • V. Nierstrasz, J. Müssig, L. Hildebrandt, Sustainable cellulose-based materials for future textile and fashion applications. Sustainability 12(18), 7509 (2020)

    Google Scholar 

  • Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125(47), 14300–14306 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Mohammad R.M. Jamir, Mohammad S.A. Majid, Azduwin Khasri, Natural lightweight hybrid composites for aircraft structural applications, In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Aerospace Applications, Ed Mohammad Jawaid, Mohamed Thariq, Woodhead Publishing, (2018) 155–170.

    Google Scholar 

  • M. Pauly, K. Keegstra, Cellulose biosynthesis in higher plants. Annu. Rev. Cell Dev. Biol. 24, 19–46 (2008)

    Google Scholar 

  • A. Rahimi, F. Atyabi, M. Ismail, M. Folic, Recent advances on biomedical applications of nanocellulose. Eur. Polym. J. 67, 1–20 (2015)

    Google Scholar 

  • W.H. Schlesinger, J.A. Andrews, Soil respiration and the global carbon cycle. Biogeochemistry 48(1), 7–20 (2000)

    Article  CAS  Google Scholar 

  • E. Schnepf, The fine structure of the plant cell wall, in Plant Cell Biology, (Springer, Berlin/Heidelberg, 1986), pp. 1–23

    Google Scholar 

  • E. Settanni, J. Bohlmann, Life cycle assessment of cellulose-based insulation materials: A review. Energ. Buildings 166, 401–411 (2018)

    Google Scholar 

  • K.T. Shalumon, K.H. Anulekha, K.P. Chennazhi, H. Tamura, S.V. Nair, R. Jayakumar, Fabrication of cellulose-based medical products with improved properties and geometries using novel processing techniques. Carbohydr. Polym. 229, 115449 (2020)

    Google Scholar 

  • R.L. Sinsabaugh, C.L. Lauber, M.N. Weintraub, B. Ahmed, S.D. Allison, C. Crenshaw, et al., Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 19(12), 1313–1324 (2016)

    Google Scholar 

  • I. Siro, D. Plackett, M.S. Hedenqvist, An overview of cellulose-based materials suitable for soft and hard tissue regeneration. Materials 12(21), 3524 (2019)

    Google Scholar 

  • I. Siro, D. Plackett, M.S. Hedenqvist, Recent developments in nanocellulose reinforced polymer nanocomposites. Polymer 212, 123123 (2020)

    Google Scholar 

  • J. Slavin, Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5(4), 1417–1435 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Sobhy, A.F. Hassan, A. Abdelrasoul, Cellulose acetate membranes for desalination applications: A review. Desalination 450, 93–110 (2019)

    Google Scholar 

  • A.J. Stamm, Wood and Cellulose Science (Ronald Press, New York, 1964)

    Google Scholar 

  • B. Sundqvist, T. Morén, Composite particle boards based on renewable resources: Effect of type and amount of cellulose fibre on board properties. Compos. Sci. Technol. 62(9), 1279–1289 (2002)

    Google Scholar 

  • D.E. Threapleton, D.C. Greenwood, C.E. Evans, C.L. Cleghorn, C. Nykjaer, C. Woodhead, et al., Dietary fiber intake and risk of first stroke: A systematic review and meta-analysis. Stroke 44(5), 1360–1368 (2013)

    Article  CAS  PubMed  Google Scholar 

  • R. Vanholme, B. Demedts, K. Morreel, J. Ralph, W. Boerjan, Lignin biosynthesis and its integration into metabolism. Nature 22(2), 115–120 (2019)

    Google Scholar 

  • S. Walker, J. Kokko, J. Valtonen, Cellulose insulation materials for the built environment: A review. Renew. Sust. Energ. Rev. 121, 109650 (2020)

    Google Scholar 

  • B. Yang, H. Chen, Toward a sustainable and economical cellulose-based biorefinery. Bioresour. Technol. 182, 270–274 (2015)

    Google Scholar 

  • Q. Yao, Z. Cao, X. Liang, S. Wei, Y. Zhang, M. Li, W. Liang, Cellulose-based materials for soil and water conservation: A review. J. Clean. Prod. 276, 124181 (2020)

    Google Scholar 

  • S. Zhang, G. Siqueira, X. He, 3D printing of cellulose-based hydrogels using fused deposition modeling. ACS Sustain. Chem. Eng. 6(8), 10931–10940 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

George, N., Varghese, V.M., Kavitha, O. (2023). Earth’s Versatile Gift: Cellulose. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-19-6772-6_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6772-6_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6772-6

  • Online ISBN: 978-981-19-6772-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics