Skip to main content

Nanocellulose Materials and Composites for Emerging Applications

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Abstract

There has never been a time, where the use of environmentally friendly or green materials is in high demand than now. From the perspective of environment conservation and sustainability, conscientious applications of materials with none/minimal deleterious effects on the human ecosystem are being pushed to the front burner. In this wise, nanocellulose materials or simply cellulose in nanostructured form have become green materials of huge interest owing to their intrinsic physicochemical properties. High aspect ratio, mechanical ruggedness, biocompatibility, non-toxic, high availability, and their multitudinous hydroxyl groups which can be easily tuned through various chemical reactions present nanocellulose as an attractive substrate for modern applications. In this chapter, we will present nanocellulose materials and composites for emerging applications. We started the chapter with a brief classification of nanocellulose materials into nanofibers and nanostructured materials. The nanofibers comprise cellulose nanofibrils, cellulose nanocrystal, and bacterial cellulose, while the nanostructured materials are made up of cellulose microcrystals or microcrystalline cellulose and cellulose microfibrils. A brief explanation on the preparation methods, properties, challenges, etc., encountered toward full exploitation of these materials is further provided. We showcased a gamut of areas, with huge applications of nanocellulose materials in modern technology, including formulation of stable Pickering emulsions, composites with Metal nanoparticles (MNPs), and application in anti-cancer, anti-fungal and antibacterial agents, film packaging materials fabrication, water purification, in electrospinning for sustainable fabrication of processable nanofibrous membranes and, finally, in biomedicine (wound healing and medical implant application).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NaOH:

Sodium hydroxide

HCl:

Hydrochloric acid

CaCl2:

Calcium chloride

HBr:

Hydrobromic acid

NaBH4:

Sodium borohydride

CNFs:

Cellulose nanofibrils

CNC:

Cellulose nanocrystals

MCC:

Cellulose microcrystals or Microcrystalline cellulose

BNC:

Bacterial cellulose

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxide

NaClO2:

Sodium chlorite

PVA:

Poly (vinyl alcohol)

H2SO4:

Hydrogen Tetra-oxo sulfate VI acid

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

CuNPs:

Copper nanoparticles

FeNPs:

Iron nanoparticles

PtNPs:

Platinum nanoparticles

PdNPs:

Palladium NPs

ZnO:

Zinc oxide

Fe2O3 NPs:

Iron oxide nanoparticles

TiO2 NPs:

Titanium oxide nanoparticles

PANI:

Polyaniline

GO:

Graphene oxide

4-NP:

4-Nitrophenol

4-AP:

4-Aminophenol

MO:

Methyl orange

MB:

Methylene blue

CR:

Congo Red

References

  1. Mishra, R.K., Sabu, A., Tiwari, S.K.: Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J. Saudi Chem. Soc. 22(8), 949–978 (2018)

    Article  CAS  Google Scholar 

  2. Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59(1–3), 101–106 (1998)

    Article  CAS  Google Scholar 

  3. Siddhanta, A.K., Prasad, K., Meena, R., Prasad, G., Mehta, G.K., Chhatbar, M.U., Oza, M.D., Kumar, S., Sanandiya, N.D.: Profiling of cellulose content in Indian seaweed species. Biores. Technol. 100(24), 6669–6673 (2009)

    Article  CAS  Google Scholar 

  4. Koyama, M.A.K.I.K.O., Sugiyama, J.U.N.J.I., Itoh, T.A.K.A.O.: Systematic survey on crystalline features of algal celluloses. Cellulose 4(2), 147–160 (1997)

    Article  CAS  Google Scholar 

  5. Schiener, P., Black, K.D., Stanley, M.S., Green, D.H.: The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 27(1), 363–373 (2015)

    Article  CAS  Google Scholar 

  6. Wahlström, N., Edlund, U., Pavia, H., Toth, G., Jaworski, A., Pell, A.J., Choong, F.X., Shirani, H., Nilsson, K.P.R., Richter-Dahlfors, A.: Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 27(7), 3707–3725 (2020)

    Article  Google Scholar 

  7. Jackson, J.C., Camargos, C.H., Noronha, V.T., Paula, A.J., Rezende, C.A., Faria, A.F.: Sustainable cellulose nanocrystals for improved antimicrobial properties of thin film composite membranes. ACS Sustainable Chemistry & Engineering 9(19), 6534–6540 (2021)

    Article  CAS  Google Scholar 

  8. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020)

    Article  CAS  Google Scholar 

  9. Dunlop, M.J., Clemons, C., Reiner, R., Sabo, R., Agarwal, U.P., Bissessur, R., Sojoudiasli, H., Carreau, P.J., Acharya, B.: Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  10. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  Google Scholar 

  11. Zhai, S., Chen, H., Zhang, Y., Li, P. and Wu, W., 2022. Nanocellulose: a promising nanomaterial for fabricating fluorescent composites. Cellulose, pp.1–25.

    Google Scholar 

  12. Chen, W., Yu, H., Lee, S.Y., Wei, T., Li, J., Fan, Z.: Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47(8), 2837–2872 (2018)

    Article  CAS  Google Scholar 

  13. Nascimento, D.M., Nunes, Y.L., Figueirêdo, M.C., de Azeredo, H.M., Aouada, F.A., Feitosa, J.P., Rosa, M.F., Dufresne, A.: Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. 20(11), 2428–2448 (2018)

    Article  CAS  Google Scholar 

  14. Garba, Z.N., Zhou, W., Lawan, I., Zhang, M., Yuan, Z.: Enhanced removal of prometryn using copper modified microcrystalline cellulose (Cu-MCC): optimization, isotherm, kinetics and regeneration studies. Cellulose 26(10), 6241–6258 (2019)

    Article  CAS  Google Scholar 

  15. Thoorens, G., Krier, F., Leclercq, B., Carlin, B., Evrard, B.: Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int. J. Pharm. 473(1–2), 64–72 (2014)

    Article  CAS  Google Scholar 

  16. Bao, C., Chen, X., Liu, C., Liao, Y., Huang, Y., Hao, L., Yan, H., Lin, Q.: Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium bromide-enhanced Pickering emulsions. Colloids Surf., A 608, 125442 (2021)

    Article  CAS  Google Scholar 

  17. Wang, S., Wang, Q., Kai, Y.: Cellulose nanocrystals obtained from microcrystalline cellulose by p-toluene sulfonic acid hydrolysis. NaOH and ethylenediamine treatment. Cellulose 29(3), 1637–1646 (2022)

    CAS  Google Scholar 

  18. Zulkifli, N.I., Samat, N., Anuar, H., Zainuddin, N.: Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Mater. Des. 69, 114–123 (2015)

    Article  Google Scholar 

  19. Tarchoun, A.F., Trache, D., Klapötke, T.M., Derradji, M., Bessa, W.: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26(13), 7635–7651 (2019)

    Article  CAS  Google Scholar 

  20. Chuayplod, P. and Aht-Ong, D., 2018. A study of microcrystalline cellulose prepared from parawood (Hevea brasiliensis) sawdust waste using different acid types. Journal of Metals, Materials and Minerals28(2).

    Google Scholar 

  21. Zhang, C., Wu, J., Qiu, X., Zhang, J., Chang, H., He, H., Zhao, L. and Liu, X., 2022. Enteromorpha cellulose micro-nanofibrils/poly (vinyl alcohol) based composite films with excellent hydrophilic, mechanical properties and improved thermal stability. International Journal of Biological Macromolecules.

    Google Scholar 

  22. Ramesh, S., Radhakrishnan, P.: Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Appl. Surf. Sci. 484, 1274–1281 (2019)

    Article  CAS  Google Scholar 

  23. Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y., Wang, L.: Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd. Polym. 136, 485–492 (2016)

    Article  CAS  Google Scholar 

  24. Hanif, Z., Khan, Z.A., Choi, D., La, M., Park, S.J.: One-pot synthesis of silver nanoparticle deposited cellulose nanocrystals with high colloidal stability for bacterial contaminated water purification. J. Environ. Chem. Eng. 9(4), 105535 (2021)

    Article  CAS  Google Scholar 

  25. Huang, M., Tang, Y., Wang, X., Zhu, P., Chen, T., Zhou, Y.: Preparation of polyaniline/cellulose nanocrystal composite and its application in surface coating of cellulosic paper. Prog. Org. Coat. 159, 106452 (2021)

    Article  CAS  Google Scholar 

  26. Lokhande, P.E., Singh, P.P., Vo, D.V.N., Kumar, D., Balasubramanian, K., Mubayi, A., Srivastava, A. and Sharma, A., 2022. Bacterial Nanocellulose: Green Polymer Materials for High Performance Energy Storage Applications. Journal of Environmental Chemical Engineering, p.108176.

    Google Scholar 

  27. Czaja, W.K., Young, D.J., Kawecki, M. and Brown, R.M., 2007. The future prospects of microbial cellulose in biomedical applications. biomacromolecules8(1), pp.1–12.

    Google Scholar 

  28. Roman, M., Winter, W.T.: Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5), 1671–1677 (2004)

    Article  CAS  Google Scholar 

  29. Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H.A., Abdul Kari, Z., Mohd Noor, N.H., Ray, R.R.: Bacterial cellulose: Production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci. 22(23), 12984 (2021)

    Article  CAS  Google Scholar 

  30. Ashaolu, T.J.: Nanoemulsions for health, food, and cosmetics: A review. Environ. Chem. Lett. 19(4), 3381–3395 (2021)

    Article  CAS  Google Scholar 

  31. Lin, N., Tang, J., Dufresne, A., Tam, M.K. (eds.): pp. 171–219. Springer, Berlin, Germany (2019)

    Google Scholar 

  32. Niroula, A., Gamot, T.D., Ooi, C.W., Dhital, S.: Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocolloids 112, 106303 (2021)

    Article  CAS  Google Scholar 

  33. Xie, Y., Lei, Y., Rong, J., Zhang, X., Li, J., Chen, Y., Liang, H., Li, Y., Li, B., Fang, Z., Luo, X.: Physico-chemical properties of reduced-fat biscuits prepared using O/W cellulose-based Pickering emulsion. LWT 148, 111745 (2021)

    Article  CAS  Google Scholar 

  34. Ahsan, H.M., Zhang, X., Liu, Y., Wang, Y., Li, Y., Li, B., Wang, J., Liu, S.: Stable cellular foams and oil powders derived from methylated microcrystalline cellulose stabilized pickering emulsions. Food Hydrocolloids 104, 105742 (2020)

    Article  CAS  Google Scholar 

  35. Gong, X., Wang, Y., Chen, L.: Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohyd. Polym. 169, 295–303 (2017)

    Article  CAS  Google Scholar 

  36. Zhai, X., Lin, D., Liu, D., Yang, X.: Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Res. Int. 103, 12–20 (2018)

    Article  CAS  Google Scholar 

  37. Zhang, X., Li, Y., Li, J., Liang, H., Chen, Y., Li, B., Luo, X., Pei, Y., Liu, S.: Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT 154, 112605 (2022)

    Article  CAS  Google Scholar 

  38. Liu, W., Liu, K., Wang, Y., Lin, Q., Liu, J., Du, H., Pang, B., Si, C.: Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Ind. Crops Prod. 185, 115123 (2022)

    Article  CAS  Google Scholar 

  39. Miao, C., Mirvakili, M.N., Hamad, W.Y.: A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals. J. Colloid Interface Sci. 608, 2820–2829 (2022)

    Article  CAS  Google Scholar 

  40. Dong, H., Ding, Q., Jiang, Y., Li, X., Han, W.: Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohyd. Polym. 265, 118101 (2021)

    Article  CAS  Google Scholar 

  41. Bakhtiar, R.: Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J. Chem. Educ. 90(2), 203–209 (2013)

    Article  CAS  Google Scholar 

  42. Rónavári, A., Igaz, N., Adamecz, D.I., Szerencsés, B., Molnar, C., Kónya, Z., Pfeiffer, I., Kiricsi, M.: Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules 26(4), 844 (2021)

    Article  Google Scholar 

  43. Jayeoye, T.J., Kangkamano, T., Rujiralai, T.: Exploiting the high conjugation capacity of creatinine on 3, 3′-dithiodipropionic acid di (N-hydroxysuccinimide ester) functionalized gold nanoparticles towards sensitive determination of mercury (II) ion in water. Journal of Nanostructure in Chemistry 12(2), 263–276 (2022)

    Article  CAS  Google Scholar 

  44. Jayeoye, T.J., Ma, J., Rujiralai, T.: Creatinine assembled on dithiobis (succinimidylpropionate) modified gold nanoparticles as a sensitive and selective colorimetric nanoprobe for silver ion detection. J. Environ. Chem. Eng. 9(4), 105770 (2021)

    Article  CAS  Google Scholar 

  45. Jayeoye, T.J., Eze, F.N., Singh, S., Olatunde, O.O., Benjakul, S., Rujiralai, T.: Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int. J. Biol. Macromol. 179, 196–205 (2021)

    Article  CAS  Google Scholar 

  46. Jayeoye, T.J., Sirimahachai, U., Rujiralai, T.: Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles. Carbohyd. Polym. 255, 117376 (2021)

    Article  CAS  Google Scholar 

  47. Eze, F.N., Tola, A.J., Nwabor, O.F., Jayeoye, T.J.: Centella asiatica phenolic extract-mediated bio-fabrication of silver nanoparticles: characterization, reduction of industrially relevant dyes in water and antimicrobial activities against foodborne pathogens. RSC Adv. 9(65), 37957–37970 (2019)

    Article  CAS  Google Scholar 

  48. Jayeoye, T.J., Rujiralai, T.: Green, in situ fabrication of silver/poly (3-aminophenyl boronic acid)/sodium alginate nanogel and hydrogen peroxide sensing capacity. Carbohyd. Polym. 246, 116657 (2020)

    Article  CAS  Google Scholar 

  49. Jayeoye, T.J., Eze, F.N., Olatunde, O.O., Benjakul, S., Rujiralai, T.: Synthesis of silver and silver@ zero valent iron nanoparticles using Chromolaena odorata phenolic extract for antibacterial activity and hydrogen peroxide detection. J. Environ. Chem. Eng. 9(3), 105224 (2021)

    Article  CAS  Google Scholar 

  50. Eze, F.N., Jayeoye, T.J., Tola, A.J.: Fabrication of label-free and eco-friendly ROS optical sensor with potent antioxidant properties for sensitive hydrogen peroxide detection in human plasma. Colloids Surf., B 204, 111798 (2021)

    Article  CAS  Google Scholar 

  51. Zhang, H., Xu, W., Wang, P. and Zhang, L., 2022. Ultrasound assisted synthesis of starch-capped Cu2O NPs towards the degradation of dye and its anti-lung carcinoma properties. Arabian Journal of Chemistry, p.104121.

    Google Scholar 

  52. Noronha, V.T., Jackson, J.C., Camargos, C.H., Paula, A.J., Rezende, C.A., Faria, A.F.: “Attacking–Attacking” Anti-biofouling Strategy Enabled by Cellulose Nanocrystals-Silver Materials. ACS Appl. Bio Mater. 5(3), 1025–1037 (2022)

    Article  CAS  Google Scholar 

  53. Sharma, V., Basak, S. and Ali, S.W., 2022. Synthesis of copper nanoparticles on cellulosic fabrics and evaluation of their multifunctional performances. Cellulose, pp.1–16.

    Google Scholar 

  54. Ayyappan, V.G., Vhatkar, S.S., Bose, S., Sampath, S., Das, S.K., Samanta, D., Mandal, A.B.: Incorporations of gold, silver and carbon nanomaterials to kombucha-derived bacterial cellulose: Development of antibacterial leather-like materials. J. Indian Chem. Soc. 99(1), 100278 (2022)

    Article  CAS  Google Scholar 

  55. Llorens, A., Lloret, E., Picouet, P., Fernandez, A.: Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int. J. Food Microbiol. 158(2), 113–119 (2012)

    Article  CAS  Google Scholar 

  56. Wang, C., Song, F., Wang, X.L., Wang, Y.Z.: A cellulose nanocrystal templating approach to synthesize size-controlled gold nanoparticles with high catalytic activity. Int. J. Biol. Macromol. 209, 464–471 (2022)

    Article  CAS  Google Scholar 

  57. Tyopine, A.A., Jayeoye, T.J., Okoye, C.O.: Geoaccumulation assessment of heavy metal pollution in Ikwo soils, eastern Nigeria. Environ. Monit. Assess. 190(2), 1–11 (2018)

    Article  CAS  Google Scholar 

  58. Saeed, M., Usman, M. and Haq, A.U., 2018. Catalytic Degradation of Organic Dyes in Aqueous Medium (Vol. 13, p. 197). London, UK: IntechOpen.

    Google Scholar 

  59. Deshmukh, A.R., Dikshit, P.K., Kim, B.S.: Green in situ immobilization of gold and silver nanoparticles on bacterial nanocellulose film using Punica granatum peels extract and their application as reusable catalysts. Int. J. Biol. Macromol. 205, 169–177 (2022)

    Article  CAS  Google Scholar 

  60. Wu, X., Lu, C., Zhou, Z., Yuan, G., Xiong, R., Zhang, X.: Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ. Sci. Nano 1(1), 71–79 (2014)

    Article  CAS  Google Scholar 

  61. Kamal, T., Khan, S.B., Asiri, A.M.: Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23(3), 1911–1923 (2016)

    Article  CAS  Google Scholar 

  62. Gola, D., Bhatt, N., Bajpai, M., Singh, A., Arya, A., Chauhan, N., Srivastava, S.K., Tyagi, P.K., Agrawal, Y.: Silver nanoparticles for enhanced dye degradation. Current Research in Green and Sustainable Chemistry 4, 100132 (2021)

    Article  CAS  Google Scholar 

  63. David, L., Moldovan, B.: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10(2), 202 (2020)

    Article  CAS  Google Scholar 

  64. Pawcenis, D., Twardowska, E., Leśniak, M., Jędrzejczyk, R.J., Sitarz, M. and Profic-Paczkowska, J., 2022. TEMPO-oxidized cellulose for in situ synthesis of Pt nanoparticles. Study of catalytic and antimicrobial properties. International Journal of Biological Macromolecules.

    Google Scholar 

  65. Heidari, H., Karbalaee, M.: Ultrasonic assisted synthesis of nanocrystalline cellulose as support and reducing agent for Ag nanoparticles: green synthesis and novel effective nanocatalyst for degradation of organic dyes. Appl. Organomet. Chem. 33(9), e5070 (2019)

    Article  Google Scholar 

  66. Heidari, H., Karbalaee, M.: Silver-nanoparticle Supported on Nanocrystalline Cellulose using Cetyltrimethylammonium Bromide: Synthesis and Catalytic Performance for Decolorization of Dyes. Journal of Nanostructures 11(1), 48–56 (2021)

    CAS  Google Scholar 

  67. Gholami Derami, H., Gupta, P., Gupta, R., Rathi, P., Morrissey, J.J., Singamaneni, S.: Palladium nanoparticle-decorated mesoporous polydopamine/bacterial nanocellulose as a catalytically active universal dye removal ultrafiltration membrane. ACS Applied Nano Materials 3(6), 5437–5448 (2020)

    Article  CAS  Google Scholar 

  68. Zhang, W., Wang, X., Zhang, Y., van Bochove, B., Mäkilä, E., Seppälä, J., Xu, W., Willför, S., Xu, C.: Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 242, 116523 (2020)

    Article  CAS  Google Scholar 

  69. Yan, W., Chen, C., Wang, L., Zhang, D., Li, A.J., Yao, Z., Shi, L.Y.: Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohyd. Polym. 140, 66–73 (2016)

    Article  CAS  Google Scholar 

  70. Wang, Y., Zhang, H., Lin, X., Chen, S., Jiang, Z., Wang, J., Huang, J., Zhang, F., Li, H.: Naked au nanoparticles monodispersed onto multifunctional cellulose nanocrystal–graphene hybrid sheets: Towards efficient and sustainable heterogeneous catalysts. New J. Chem. 42(3), 2197–2203 (2018)

    Article  CAS  Google Scholar 

  71. Baruah, D., Das, R.N., Hazarika, S., Konwar, D.: Biogenic synthesis of cellulose supported Pd (0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun. 72, 73–80 (2015)

    Article  CAS  Google Scholar 

  72. Saravanan, R., Gracia, F. and Stephen, A., 2017. Basic principles, mechanism, and challenges of photocatalysis. In Nanocomposites for visible light-induced photocatalysis (pp. 19–40). Springer, Cham.

    Google Scholar 

  73. Samsudin, E.M., Goh, S.N., Wu, T.Y., Ling, T.T., Hamid, S.A., Juan, J.C.: Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana 44(7), 1011–1019 (2015)

    Article  CAS  Google Scholar 

  74. Rathod, M., Moradeeya, P.G., Haldar, S., Basha, S.: Nanocellulose/TiO2 composites: preparation, characterization, and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media. Photochem. Photobiol. Sci. 17(10), 1301–1309 (2018)

    Article  CAS  Google Scholar 

  75. Nair, S.S., Chen, J., Slabon, A., Mathew, A.P.: Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals. RSC Adv. 10(61), 37374–37381 (2020)

    Article  CAS  Google Scholar 

  76. Farahani, M.S.V., Nikzad, M., Ghorbani, M.: Fabrication of Fe-doped ZnO/Nanocellulose Nanocomposite as an Efficient Photocatalyst for Degradation of Methylene Blue Under Visible Light. Cellulose 29, 7277–7299 (2022)

    Article  Google Scholar 

  77. Liu, G.Q., Pan, X.J., Li, J., Li, C., Ji, C.L.: Facile preparation and characterization of anatase TiO2/nanocellulose composite for photocatalytic degradation of methyl orange. J. Saudi Chem. Soc. 25(12), 101383 (2021)

    Article  CAS  Google Scholar 

  78. Xiao, H., Li, J., He, B.: Anatase-titania templated by nanofibrillated cellulose and photocatalytic degradation for methyl orange. J. Inorg. Organomet. Polym Mater. 27(4), 1022–1027 (2017)

    Article  CAS  Google Scholar 

  79. Zuo, H.F., Guo, Y.R., Li, S.J., Pan, Q.J.: Application of microcrystalline cellulose to fabricate ZnO with enhanced photocatalytic activity. J. Alloy. Compd. 617, 823–827 (2014)

    Article  CAS  Google Scholar 

  80. Lefatshe, K., Muiva, C.M., Kebaabetswe, L.P.: Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohyd. Polym. 164, 301–308 (2017)

    Article  CAS  Google Scholar 

  81. Yue, Y., Shen, S., Cheng, W., Han, G., Wu, Q., Jiang, J.: Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf., A 636, 128035 (2022)

    Article  CAS  Google Scholar 

  82. Sun, H., Guo, Y., Zelekew, O.A., Abdeta, A.B., Kuo, D.H., Wu, Q., Zhang, J., Yuan, Z., Lin, J., Chen, X.: Biological renewable nanocellulose templated CeO2/TiO2 synthesis and its photocatalytic removal efficiency of pollutants. J. Mol. Liq. 336, 116873 (2021)

    Article  CAS  Google Scholar 

  83. Bahram, M., Mohseni, N. and Moghtader, M., 2016. An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels. IntechOpen.

    Google Scholar 

  84. Ren, T., Peng, J., Yuan, H., Liu, Z., Li, Q., Ma, Q., Li, X., Guo, X. and Wu, Y., 2022. Nanocellulose-based hydrogel incorporating silver nanoclusters for sensitive detection and efficient removal of hexavalent chromium. European Polymer Journal, p.111343.

    Google Scholar 

  85. Mo, L., Tan, Y., Shen, Y., Zhang, S.: Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu (II). Chemosphere 291, 132887 (2022)

    Article  CAS  Google Scholar 

  86. Rule, P., Balasubramanian, K., Gonte, R.R.: Uranium (VI) remediation from aqueous environment using impregnated cellulose beads. J. Environ. Radioact. 136, 22–29 (2014)

    Article  CAS  Google Scholar 

  87. Jin, L., Sun, Q., Xu, Q., Xu, Y.: Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores. Technol. 197, 348–355 (2015)

    Article  CAS  Google Scholar 

  88. Norfarhana, A.S., Ilyas, R.A. and Ngadi, N., 2022. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers, p.119563.

    Google Scholar 

  89. Li, W., Zhang, L., Hu, D., Yang, R., Zhang, J., Guan, Y., Lv, F., Gao, H.: A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int. J. Biol. Macromol. 187, 922–930 (2021)

    Article  CAS  Google Scholar 

  90. Zeng, H., Hao, H., Wang, X. and Shao, Z., 2022. Chitosan-based composite film adsorbents reinforced with nanocellulose for removal of Cu (II) ion from wastewater: Preparation, characterization, and adsorption mechanism. International Journal of Biological Macromolecules.

    Google Scholar 

  91. Ghosal, K., Agatemor, C., Tucker, N., Kny, E. and Thomas, S., 2018. CHAPTER 1:Electrical Spinning to Electrospinning: a Brief History , in Electrospinning: From Basic Research to Commercialization, 2018, pp. 1–23 DOI: https://doi.org/10.1039/9781788012942-00001.

  92. Alharbi, A.R., Alarifi, I.M., Khan, W.S., Asmatulu, R.: Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. Journal of Membrane and Separation Technology 5(2), 38–56 (2016)

    Article  CAS  Google Scholar 

  93. Liu, H., Gough, C.R., Deng, Q., Gu, Z., Wang, F., Hu, X.: Recent advances in electrospun sustainable composites for biomedical, environmental, energy, and packaging applications. Int. J. Mol. Sci. 21(11), 4019 (2020)

    Article  CAS  Google Scholar 

  94. Chakraborty, P.K., Adhikari, J., Saha, P.: Facile fabrication of electrospun regenerated cellulose nanofiber scaffold for potential bone-tissue engineering application. Int. J. Biol. Macromol. 122, 644–652 (2019)

    Article  CAS  Google Scholar 

  95. Patel, D.K., Dutta, S.D., Hexiu, J., Ganguly, K., Lim, K.T.: Bioactive electrospun nanocomposite scaffolds of poly (lactic acid)/cellulose nanocrystals for bone tissue engineering. Int. J. Biol. Macromol. 162, 1429–1441 (2020)

    Article  CAS  Google Scholar 

  96. Vidal, C.P., Velásquez, E., Galotto, M.J., de Dicastillo, C.L.: Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging. Food Packag. Shelf Life 31, 100802 (2022)

    Article  Google Scholar 

  97. Teixeira, M.A., Antunes, J.C., Seabra, C.L., Fertuzinhos, A., Tohidi, S.D., Reis, S., Amorim, M.T.P., Ferreira, D.P., Felgueiras, H.P.: Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly (vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications. Biomaterials Advances 137, 212830 (2022)

    Article  CAS  Google Scholar 

  98. Bates, I.I.C., Carrillo, I.B.S., Germain, H., Loranger, É., Chabot, B.: Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration. J. Environ. Chem. Eng. 9(5), 106204 (2021)

    Article  CAS  Google Scholar 

  99. Unal, S., Arslan, S., Yilmaz, B.K., Kazan, D., Oktar, F.N., Gunduz, O.: Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers. Carbohyd. Polym. 233, 115820 (2020)

    Article  CAS  Google Scholar 

  100. Teodoro, K.B., Shimizu, F.M., Scagion, V.P., Correa, D.S.: Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: Use in an electronic tongue for heavy metal detection. Sens. Actuators, B Chem. 290, 387–395 (2019)

    Article  CAS  Google Scholar 

  101. Zhang, Q., Li, Q., Zhang, L., Wang, S., Harper, D.P., Wu, Q., Young, T.M.: Preparation of electrospun nanofibrous poly (vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment. Chem. Eng. J. 399, 125768 (2020)

    Article  CAS  Google Scholar 

  102. Ao, C., Yuan, W., Zhao, J., He, X., Zhang, X., Li, Q., Xia, T., Zhang, W., Lu, C.: Superhydrophilic graphene oxide@ electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohyd. Polym. 175, 216–222 (2017)

    Article  CAS  Google Scholar 

  103. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/658279/IPOL_STU(2020)658279_EN.pdf. Accessed 15th August 2022.

  104. Lamichhane, G., Acharya, A., Marahatha, R., Modi, B., Paudel, R., Adhikari, A., Raut, B.K., Aryal, S. and Parajuli, N., 2022. Microplastics in environment: global concern, challenges, and controlling measures. International Journal of Environmental Science and Technology, pp.1–22.

    Google Scholar 

  105. Geyer, R., Jambeck, J.R., Law, K.L.: Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), e1700782 (2017)

    Article  Google Scholar 

  106. He, Y., Lu, L., Lin, Y., Li, R., Yuan, Y., Lu, X., Zou, Y., Zhou, W., Wang, Z. and Li, J., 2022. Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. International Journal of Biological Macromolecules.

    Google Scholar 

  107. Wu, Z., Deng, W., Luo, J., Deng, D.: Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles. Carbohyd. Polym. 205, 447–455 (2019)

    Article  CAS  Google Scholar 

  108. Halloub, A., Raji, M., Essabir, H., Chakchak, H., Boussen, R., Bensalah, M., Bouhfid, R., Qaiss, A.: Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf-life extension of food. Carbohyd. Polym. (2022). https://doi.org/10.1016/j.carbpol.2022.119972

    Article  Google Scholar 

  109. El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E., Dufresne, A.: Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohyd. Polym. 124, 337–346 (2015)

    Article  CAS  Google Scholar 

  110. Zhang, Y., Man, J., Li, J., Xing, Z., Zhao, B., Ji, M., Xia, H. and Li, J., 2022. Preparation of the alginate/carrageenan/shellac films reinforced with cellulose nanocrystals obtained from enteromorpha for food packaging. International Journal of Biological Macromolecules.

    Google Scholar 

  111. Sarwar, M.S., Niazi, M.B.K., Jahan, Z., Ahmad, T., Hussain, A.: Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohyd. Polym. 184, 453–464 (2018)

    Article  CAS  Google Scholar 

  112. Mugwagwa, L.R., Chimphango, A.F.: Physicochemical properties and potential application of hemicellulose/pectin/nanocellulose biocomposites as active packaging for fatty foods. Food Packag. Shelf Life 31, 100795 (2022)

    Article  CAS  Google Scholar 

  113. Zhang, C., Wu, J., Qiu, X., Zhang, J., Chang, H., He, H., Zhao, L., Liu, X.: Enteromorpha cellulose micro-nanofibrils/poly (vinyl alcohol) based composite films with excellent hydrophilic, mechanical properties and improved thermal stability. Int. J. Biol. Macromol. 217, 229–242 (2022)

    Article  CAS  Google Scholar 

  114. Niu, X., Liu, Y., Song, Y., Han, J., Pan, H.: Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agent in polylactic acid/chitosan composite film for food packaging. Carbohyd. Polym. 183, 102–109 (2018)

    Article  CAS  Google Scholar 

  115. Shaghaleh, H., Hamoud, Y.A., Xu, X., Liu, H., Wang, S., Sheteiwy, M., Dong, F., Guo, L., Qian, Y., Li, P., Zhang, S.: Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging. Int. J. Biol. Macromol. 183, 1911–1924 (2021)

    Article  CAS  Google Scholar 

  116. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: Current status and future prospect. Eur. Polymer J. 59, 302–325 (2014)

    Article  CAS  Google Scholar 

  117. Atila, D., Karataş, A., Keskin, D. and Tezcaner, A., 2022. Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. International Journal of Biological Macromolecules.

    Google Scholar 

  118. Ning, L., You, C., Zhang, Y., Li, X., Wang, F.: Polydopamine loaded fluorescent nanocellulose–agarose hydrogel: A pH-responsive drug delivery carrier for cancer therapy. Composites Communications 26, 100739 (2021)

    Article  Google Scholar 

  119. Huang, C., Ye, Q., Dong, J., Li, L., Wang, M., Zhang, Y., Zhang, Y., Wang, X., Wang, P., Jiang, Q.: Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Materials in Medicine 4, 1–14 (2023)

    Article  Google Scholar 

  120. Shi, Y., Jiao, H., Sun, J., Lu, X., Yu, S., Cheng, L., Wang, Q., Liu, H., Biranje, S., Wang, J. and Liu, J., 2022. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydrate Polymers, p.119208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titilope John Jayeoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayeoye, T.J., Eze, F.N., Singh, S. (2023). Nanocellulose Materials and Composites for Emerging Applications. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_5

Download citation

Publish with us

Policies and ethics