Skip to main content

Surface Modification of Regenerative Cellulose (RC) for Biomedical Applications

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Abstract

In modern green and sustainable chemistry, regenerative cellulose (RC) plays an increasingly critical role in science and engineering, including electronics and biomedical applications such as tissue engineering, drug delivery, and biosensing with its high biocompatibility and biodegradability, less toxicity, and high mechanical strength. RC can be surface modified through hydroxyl groups using ligands, polymers, metal nanoparticles, and carbon-based nanomaterials to highly chemical active and sophisticated materials for various biomedical applications. The surface-modified RC confers excellent chemical, electrical, optical, and mechanical properties that can selectively bind to the target biomolecules and cellular environments easily. This chapter reviews RC surface modification methods by using organic and inorganic nanomaterials for biomedical applications. Furthermore, this review summarizes the recent advances in adopting polymers and inorganic materials capable of functionalizing the RC surfaces and the effects of the guest molecule—RC composites in tissue engineering, biosensing, and wound dressing applications. This review aims to provide a comprehensive overview of the consistent improvement of functionalized RC and RC composites for highly sophisticated biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R.G., Klein-Nulend, J.: Cellulose and its derivatives: towards biomedical applications. Cellulose 28(4), 1893–1931 (2021)

    Article  CAS  Google Scholar 

  2. Shokri, J., Adibki, K.: Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In: Cellulose—Medical, Pharmaceutical and Electronic Applications. InTech, p 13 (2013)

    Google Scholar 

  3. Manian, AP., Pham, T., Bechtold, T.: Regenerated cellulosic fibers. In: Handbook of Properties of Textile and Technical Fibres. Elsevier, pp 329–343 (2018)

    Google Scholar 

  4. Isobe, N., Kimura, S., Wada, M., Kuga, S.: Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohyd. Polym. 89(4), 1298–1300 (2012)

    Article  CAS  Google Scholar 

  5. Hajlane, A., Kaddami, H., Joffe, R.: Chemical modification of regenerated cellulose fibres by cellulose nano-crystals: Towards hierarchical structure for structural composites reinforcement. Ind. Crops Prod. 100, 41–50 (2017)

    Article  CAS  Google Scholar 

  6. Singh, P., Duarte, H., Alves, L., Antunes, F., Le Moigne, N., Dormanns, J., Duchemin, B., Staiger, MP., Medronho, B.: From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development. In: Cellulose—Fundamental Aspects and Current Trends. InTech, p 13 (2015)

    Google Scholar 

  7. Sirviö, J.A., Heiskanen, J.P.: Room-temperature dissolution and chemical modification of cellulose in aqueous tetraethylammonium hydroxide–carbamide solutions. Cellulose 27(4), 1933–1950 (2020)

    Article  Google Scholar 

  8. Soykeabkaew, N., Nishino, T., Peijs, T.: All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos. A Appl. Sci. Manuf. 40(4), 321–328 (2009)

    Article  Google Scholar 

  9. Kaco, H., Zakaria, S., Chia, C.H., Sajab, M.S., Mohd Saidi, A.S.: Characterization of Aldehyde Crosslinked Kenaf Regenerated Cellulose Film. BioResources 10(4), 6705–6719 (2015)

    Article  CAS  Google Scholar 

  10. Gan, S., Zakaria, S., Chia, CH., Chen, RS., Ellis, A V., Kaco, H.: Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLOS ONE (12) 3, e0173743 (2017)

    Google Scholar 

  11. Kane, SN., Mishra, A., Dutta, AK.: International Conference on Recent Trends in Physics 2016 (ICRTP2016). Journal of Physics: Conference Series (755) 1, 011001 (2016)

    Google Scholar 

  12. Ma, Z., Ramakrishna, S.: Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci. 319(1–2), 23–28 (2008)

    Article  CAS  Google Scholar 

  13. Long, L-Y., Weng, Y-X., Wang, Y-Z.: Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers (10) 6, 623 (2018)

    Google Scholar 

  14. Sezer, S., Şahin, İ., Öztürk, K., Şanko, V., Koçer, Z., Sezer, ÜA.: Cellulose-Based Hydrogels as Biomaterials. pp 1177–1203 (2019)

    Google Scholar 

  15. Liu, X., Xiao, W., Ma, X., Huang, L., Ni, Y., Chen, L., Ouyang, X., Li, J.: Conductive Regenerated Cellulose Film and Its Electronic Devices – A Review. Carbohydrate Polymers (250) July, 116969 (2020)

    Google Scholar 

  16. Wang, S., Guo, J., Ma, Y., Wang, AX., Kong, X., Yu, Q.: Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource. Polymers (13) 13, 2142 (2021)

    Google Scholar 

  17. Wan, C., Jiao, Y., Wei, S., Zhang, L., Wu, Y., Li, J.: Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chem. Eng. J. 359, 459–475 (2019)

    Article  CAS  Google Scholar 

  18. López Durán, V., Larsson, P.A., Wågberg, L.: Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohyd. Polym. 182, 1–7 (2018)

    Article  Google Scholar 

  19. Wu, S., Applewhite, A.J., Niezgoda, J., Snyder, R., Shah, J., Cullen, B., Schultz, G., Harrison, J., Hill, R., Howell, M., Speyrer, M., Utra, H., de Leon, J., Lee, W., Treadwell, T.: Oxidized Regenerated Cellulose/Collagen Dressings: Review of Evidence and Recommendations. Adv. Skin Wound Care 30(11S), S1–S18 (2017)

    Article  Google Scholar 

  20. Hirota, M., Tamura, N., Saito, T., Isogai, A.: Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohyd. Polym. 78(2), 330–335 (2009)

    Article  CAS  Google Scholar 

  21. Sirviö, J.A.: Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. Journal of Materials Chemistry A 7(2), 755–763 (2019)

    Article  Google Scholar 

  22. Adsul, M., Soni, S.K., Bhargava, S.K., Bansal, V.: Facile Approach for the Dispersion of Regenerated Cellulose in Aqueous System in the Form of Nanoparticles. Biomacromol 13(9), 2890–2895 (2012)

    Article  CAS  Google Scholar 

  23. Carvalho, JPF., Silva, ACQ., Silvestre, AJD., Freire, CSR., Vilela, C.: Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. Nanomaterials (11) 10, 2744 (2021)

    Google Scholar 

  24. Mystek, K., Reid, M.S., Larsson, P.A., Wågberg, L..: In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites. Ind. Eng. Chem. Res. 59(7), 2968–2976 (2020)

    Article  CAS  Google Scholar 

  25. Li, H., Kruteva, M., Mystek, K., Dulle, M., Ji, W., Pettersson, T., Wågberg, L.: Macro- and Microstructural Evolution during Drying of Regenerated Cellulose Beads. ACS Nano 14(6), 6774–6784 (2020)

    Article  CAS  Google Scholar 

  26. Wu, R., Liu, L.: Magnetic cellulose beads as support for enzyme immobilization using polyelectrolytes through electrostatic adsorption. BioResources 15(2), 3190–3200 (2020)

    Article  CAS  Google Scholar 

  27. Voon, L.K., Pang, S.C., Chin, S.F.: Porous Cellulose Beads Fabricated from Regenerated Cellulose as Potential Drug Delivery Carriers. J. Chem. 2017, 1–11 (2017)

    Article  Google Scholar 

  28. Chakraborty, P.K., Adhikari, J., Saha, P.: Facile fabrication of electrospun regenerated cellulose nanofiber scaffold for potential bone-tissue engineering application. Int. J. Biol. Macromol. 122, 644–652 (2019)

    Article  CAS  Google Scholar 

  29. Pértile, R., Moreira, S., Andrade, F., Domingues, L., Gama, M.: Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol. Prog. 28(2), 526–532 (2012)

    Article  Google Scholar 

  30. Ye, D., Zhong, Z., Xu, H., Chang, C., Yang, Z., Wang, Y., Ye, Q., Zhang, L.: Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose 23(1), 749–763 (2016)

    Article  CAS  Google Scholar 

  31. Patchan, M., Graham, J.L., Xia, Z., Maranchi, J.P., McCally, R., Schein, O., Elisseeff, J.H., Trexler, M.M.: Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater. Sci. Eng., C 33(5), 3069–3076 (2013)

    Article  CAS  Google Scholar 

  32. Tang, Y., Wang, H., Hou, D., Tan, H., Yang, M.: Regenerated cellulose aerogel: Morphology control and the application as the template for functional cellulose nanoparticles. Journal of Applied Polymer Science (137) 38, 49127 (2020)

    Google Scholar 

  33. Vakili, MR., Gholami, M., Mosallaei, Z., Ghasemi, AM.: Modification of regenerated cellulose membrane by impregnation of silver nanocrystal clusters. Journal of Applied Polymer Science (137) 3, 48292 (2020)

    Google Scholar 

  34. Joseph, B., K, S V., Sabu, C., Kalarikkal, N., Thomas, S.: Cellulose nanocomposites: Fabrication and biomedical applications. Journal of Bioresources and Bioproducts (5) 4, 223–237 (2020)

    Google Scholar 

  35. NemeĹź, NS., Ardean, C., Davidescu, CM., Negrea, A., Ciopec, M., DuĹŁeanu, N., Negrea, P., Paul, C., Duda-Seiman, D., Muntean, D.: Antimicrobial Activity of Cellulose Based Materials. Polymers (14) 4, 735 (2022)

    Google Scholar 

  36. Shankar, S., Oun, AA., Rhim, J-W.: Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. International Journal of Biological Macromolecules (107) PartA, 17–27 (2018)

    Google Scholar 

  37. Shao, W., Wang, S., Wu, J., Huang, M., Liu, H., Min, H.: Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes. RSC Adv. 6(70), 65879–65884 (2016)

    Article  CAS  Google Scholar 

  38. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 124(18), 4974–4975 (2002)

    Article  CAS  Google Scholar 

  39. Zainul Armir, NA., Zulkifli, A., Gunaseelan, S., Palanivelu, SD., Salleh, KM., Che Othman, MH., Zakaria, S.: Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers (13) 20, 3586 (2021)

    Google Scholar 

  40. Haider, A., Haider, S., Kang, I.-K.: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)

    Article  CAS  Google Scholar 

  41. Chen, J.Y., Sun, L., Jiang, W., Lynch, V.M.: Antimicrobial regenerated cellulose/nano-silver fiber without leaching. J. Bioact. Compat. Polym. 30(1), 17–33 (2015)

    Article  Google Scholar 

  42. Liu, S., Luo, X., Zhou, J.: Magnetic Responsive Cellulose Nanocomposites and Their Applications. In: Cellulose—Medical, Pharmaceutical and Electronic Applications. InTech, p 13 (2013)

    Google Scholar 

  43. Papaparaskeva, G., Dinev, MM., Krasia-Christoforou, T., Turcu, R., Porav, SA., Balanean, F., Socoliuc, V.: White Magnetic Paper with Zero Remanence Based on Electrospun Cellulose Microfibers Doped with Iron Oxide Nanoparticles. Nanomaterials (10) 3, 517 (2020)

    Google Scholar 

  44. Sofi, HS., Akram, T., Shabir, N., Vasita, R., Jadhav, AH., Sheikh, FA.: Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Materials Science and Engineering: C (118) November 2019, 111547 (2021)

    Google Scholar 

  45. Tian, M., Qu, L., Zhang, X., Zhang, K., Zhu, S., Guo, X., Han, G., Tang, X., Sun, Y.: Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd. Polym. 111, 456–462 (2014)

    Article  CAS  Google Scholar 

  46. Zhang, T., Zhang, X., Chen, Y., Duan, Y., Zhang, J.: Green Fabrication of Regenerated Cellulose/Graphene Films with Simultaneous Improvement of Strength and Toughness by Tailoring the Nanofiber Diameter. ACS Sustainable Chemistry & Engineering 6(1), 1271–1278 (2018)

    Article  CAS  Google Scholar 

  47. Wang, X., Yan, Q., Gao, X., Wang, S., He, Y., Zhang, L.: Infrared and fluorescence properties of reduced graphene oxide/regenerated cellulose composite fibers. BioResources 15(2), 4434–4448 (2020)

    Article  CAS  Google Scholar 

  48. Tang, L., Li, X., Du, D., He, C.: Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Progress in Natural Science: Materials International 22(4), 341–346 (2012)

    Article  Google Scholar 

  49. Machnicka, A., Fryczkowska, B.: Bioactive Membranes from Cellulose with a Graphene Oxide Admixture. Journal of Ecological Engineering 19(6), 231–240 (2018)

    Article  Google Scholar 

  50. Chook, S.W., Chia, C.H., Zakaria, S., Ayob, M.K., Huang, N.M., Neoh, H.M., Jamal, R.: Antibacterial hybrid cellulose–graphene oxide nanocomposite immobilized with silver nanoparticles. RSC Adv. 5(33), 26263–26268 (2015)

    Article  CAS  Google Scholar 

  51. Yamzon, J.L., Kokorowski, P., Koh, C.J.: Stem cells and tissue engineering applications of the genitourinary tract. Pediatr. Res. 63(5), 472–477 (2008)

    Article  Google Scholar 

  52. Agarwal, C., CsĂłka, L.: Surface-modified cellulose in biomedical engineering (2019)

    Google Scholar 

  53. Ladewig, K.: Drug delivery in soft tissue engineering. Expert Opin. Drug Deliv. 8(9), 1175–1188 (2011)

    Article  CAS  Google Scholar 

  54. Modi, U., Kedaria, D., Dhimmar, B., Vasita, R.: Emerging Trends in Nanomedicine. Springer Nature Singapore Pte Ltd. (2021)

    Google Scholar 

  55. Ikada, Y.: Challenges in tissue engineering. J. R. Soc. Interface 3(10), 589–601 (2006)

    Article  CAS  Google Scholar 

  56. Tortorella, S., Buratti, V.V., Maturi, M., Sambri, L., Franchini, M.C., Locatelli, E.: Surface-modified nanocellulose for application in biomedical engineering and nanomedicine: A review. Int. J. Nanomed. 15, 9909–9937 (2020)

    Article  CAS  Google Scholar 

  57. Courtenay, J.C., Johns, M.A., Galembeck, F., Deneke, C., Lanzoni, E.M., Costa, C.A., Scott, J.L., Sharma, R.I.: Surface modified cellulose scaffolds for tissue engineering. Cellulose 24(1), 253–267 (2017)

    Article  CAS  Google Scholar 

  58. Kim, Y., Meade, SM., Chen, K., Feng, H., Rayyan, J., Hess-Dunning, A., Ereifej, ES.: Nano-architectural approaches for improved intracortical interface technologies. Frontiers in Neuroscience (12) 456, (2018)

    Google Scholar 

  59. Katti, D., Vasita, R., Shanmugam, K.: Improved Biomaterials for Tissue Engineering Applications: Surface Modification of Polymers. Curr. Top. Med. Chem. 8(4), 341–353 (2008)

    Article  Google Scholar 

  60. De Araújo Júnior, AM., Braido, G., Saska, S., Barud, HS., Franchi, LP., Assunção, RMN., Scarel-Caminaga, RM., Capote, TSO., Messaddeq, Y., Ribeiro, SJL.: Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers (136) 892–898 (2016)

    Google Scholar 

  61. Filion, T.M., Kutikov, A., Song, J.: Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg. Med. Chem. Lett. 21(17), 5067–5070 (2011)

    Article  CAS  Google Scholar 

  62. Li, G., Han, Q., Lu, P., Zhang, L., Zhang, Y., Chen, S., Zhang, P., Zhang, L., Cui, W., Wang, H., Zhang, H.: Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research 2020, 1–18 (2020)

    Article  Google Scholar 

  63. Courtenay, J.C., Deneke, C., Lanzoni, E.M., Costa, C.A., Bae, Y., Scott, J.L., Sharma, R.I.: Modulating cell response on cellulose surfaces; tunable attachment and scaffold mechanics. Cellulose 25(2), 925–940 (2018)

    Article  CAS  Google Scholar 

  64. Calori, IR., Braga, G., de Jesus, P da CC., Bi, H., Tedesco, AC.: Polymer scaffolds as drug delivery systems. European Polymer Journal (129) 109621 (2020)

    Google Scholar 

  65. Goodarzi, K., Jonidi Shariatzadeh, F., Solouk, A., Akbari, S., Mirzadeh, H.: Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. European Polymer Journal (139) August, 109992 (2020)

    Google Scholar 

  66. Garg, T., Singh, O., Arora, S., Murthy, RSR.: Scaffold: A novel carrier for cell and drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems (29) 1, 1–63 (2012)

    Google Scholar 

  67. Khine, Y.Y., Stenzel, M.H.: Surface modified cellulose nanomaterials: A source of non-spherical nanoparticles for drug delivery. Mater. Horiz. 7(7), 1727–1758 (2020)

    Article  CAS  Google Scholar 

  68. Badshah, M., Ullah, H., Khan, A.R., Khan, S., Park, J.K., Khan, T.: Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 113, 526–533 (2018)

    Article  CAS  Google Scholar 

  69. Moradpoor, H., Mohammadi, H., Safaei, M., Mozaffari, HR., Sharifi, R., Gorji, P., Sulong, AB., Muhamad, N., Ebadi, M.: Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. International Journal of Polymer Science (2022) (2022)

    Google Scholar 

  70. Orlando, I., Basnett, P., Nigmatullin, R., Wang, W., Knowles, JC., Roy, I.: Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Frontiers in Bioengineering and Biotechnology (8) September, 1–19 (2020)

    Google Scholar 

  71. Kamel, S., Khattab, T.: Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. Biosensors 10(67), 1–26 (2020)

    Google Scholar 

  72. Torres, F.G., Troncoso, O.P., Gonzales, K.N., Sari, R.M., Gea, S.: Bacterial cellulose-based biosensors. Medical Devices & Sensors 3(5), 1–13 (2020)

    Article  Google Scholar 

  73. Li, W., Zhang, L., Li, Q., Wang, S., Luo, X., Deng, H., Liu, S.: Porous structured cellulose microsphere acts as biosensor for glucose detection with “signal-and-color” output. Carbohydrate Polymers (205) October 2018, 295–301 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Fitrah Abu Bakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M.H. et al. (2023). Surface Modification of Regenerative Cellulose (RC) for Biomedical Applications. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_4

Download citation

Publish with us

Policies and ethics