Skip to main content

Role of Inorganic Nanocomposite Materials in Drug Delivery Systems

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 259 Accesses

Abstract

Nanotechnology comprehends the study of various attributes of nanostructured materials at the molecular and sub-molecular levels. Nanoparticles (NPs) have garnered attention recently as a potential tool for targeted therapy in the clinical setting. Distinct benefits of nanotechnology-based drug-delivery systems to overcome the pharmacokinetic limitations of conventional treatments are due to their small size and thus promise a good course of action in all aspects of life. Small biological targets such as RNA, DNA and proteins can be easily manipulated by nano drug delivery vehicles. The ultimate goal of research interest in nanotechnology is to create therapeutically relevant nanoparticles (NPs) with suitable dimensions, chemical composition, and surface properties that can encapsulate the appropriate dosage of a targeted drug or molecule with improved kinetics and dynamics in a biological system. To increase safety and effectiveness, NPs facilitate transport across membranes, enhance the stability and solubility of encapsulated cargos, and improve circulation time. Inorganic NPs are used in various drug delivery and imaging applications and are manufactured to have different sizes, topologies and geometries. These factors have led to substantial NPs research that has produced positive outcomes, with inorganic NPs serving as the main focus for the delivery of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NPs:

Nanoparticles

P-gp:

P-glycoprotein

MDR:

Multidrug resistance

ROS:

Reactive oxygen species

AuNPs:

Gold nanoparticles

NIR:

Near-infrared

AgNPs:

Silver nanoparticles

EPR:

Enhanced permeability and retention

RES:

Reticuloendothelial system

SiNPs:

Silica nanoparticles

IONPs:

Iron oxide nanoparticles

References

  1. Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY (2017) Synthesised zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomed 12:6059–6073

    Article  CAS  Google Scholar 

  2. Amina SJ, Guo B (2020) A review on the synthesis and functionalisation of gold nanoparticles as a drug delivery vehicle. Int J Nanomed 15:9823–9857

    Article  CAS  Google Scholar 

  3. Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP et al (2020) ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy. Int J Nanomed 15:3333–3346

    Article  CAS  Google Scholar 

  4. Bagga P, Ansari TM, Siddiqui HH, Syed A, Bahkali AH, Rahman MA, Khan MS (2016) Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandise effect of the antibiotic levofloxacin. Excli J 15:772–780

    Google Scholar 

  5. Bagga P, Siddiqui HH, Akhtar J, Mahmood T, Zahera M, Khan MS (2017) Gold nanoparticles conjugated levofloxacin: for improved antibacterial activity over levofloxacin alone. Curr Drug Deliv 14(8):1114–1119

    Article  CAS  Google Scholar 

  6. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M et al (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83

    Article  CAS  Google Scholar 

  7. Baker A, Syed A, Alyousef AA, Arshad M, Alqasim A, Khalid M, Khan MS (2020) Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria. Microb Pathog 148:104467

    Article  CAS  Google Scholar 

  8. Baskin J, Jeon JE, Lewis S (2021) Nanoparticles for drug delivery in Parkinson’s disease. J Neurol 268(5):1981–1994

    Article  Google Scholar 

  9. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  Google Scholar 

  10. Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22(13):7202

    Article  CAS  Google Scholar 

  11. Cardoso S, Silva CFD, Severino P, Silva AM, Souto SB, Zielinska A et al (2021) Genotoxicity assessment of metal-based nanocomposites applied in drug delivery. Materials 14(21):6551

    Article  CAS  Google Scholar 

  12. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 209:8–39

    Article  CAS  Google Scholar 

  13. Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A (2018) Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10(32):15350–15364

    Article  CAS  Google Scholar 

  14. Cooper DL, Conder CM, Harirforoosh S (2014) Nanoparticles in drug delivery: Mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 11(10):1661–1680

    Article  CAS  Google Scholar 

  15. D’Souza S (2014) A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharmaceutics

    Google Scholar 

  16. Das RK, Pachapur VL, Lonappan L, Nghdi M, Pulicharla R, Maiti S et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18

    Google Scholar 

  17. Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M (2018) Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev Ind Pharm 44(8):1223–1238

    Article  CAS  Google Scholar 

  18. Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070–8101

    Article  CAS  Google Scholar 

  19. Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M et al (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6):1611–1618

    Article  CAS  Google Scholar 

  20. Fang C, Kievit FM, Veiseh O, Stephen ZR, Wang T, Lee D, Ellenbogen RG, Zhang M (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162(1):233–241

    Article  CAS  Google Scholar 

  21. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel, Switzerland) 11(7):1154

    Article  Google Scholar 

  22. Hua S, de Matos M, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  Google Scholar 

  23. Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357

    Article  CAS  Google Scholar 

  24. Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D et al (2019) Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13(7):7410–7424

    Article  CAS  Google Scholar 

  25. Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A (2019) Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 9:13826

    Google Scholar 

  26. Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 109:1100–1111

    Google Scholar 

  27. Jalil SU, Zahera M, Khan MS, Ansari MI (2019) Biochemical synthesis of gold nanoparticles from leaf protein of Nicotianatabacum L. cv. xanthi and their physiological, developmental, and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnol 13(1):23–29

    Google Scholar 

  28. Kaasalainen M, Aseyev V, von Haartman E, Karaman DS, Makila E, Tenhu H et al (2017) Size, stability, and porosity of mesoporous nanoparticles characterised with light scattering. Nanoscale Res Lett 12(1):74

    Article  Google Scholar 

  29. Khan S, Danish S, Ahmad V, Baig MH, Kamal M, Ahmad S et al (2015) Magnetic nanoparticles: properties, synthesis and biomedical applications. Curr Drug Metab 8(12):16

    Google Scholar 

  30. Khan S, Haseeb M, Baig MH, Bagga PS, Siddiqui HH, Kamal MA, Khan MS (2015) Improved efficiency and stability of secnidazole: an ideal delivery system. Saudi J Biol Sci 22(1):42–49

    Google Scholar 

  31. Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS (2015) A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater Lett 159:373–376

    Article  CAS  Google Scholar 

  32. Kou L, Bhutia YD, Yao Q, He Z, Sun J, Ganapathy V (2018) Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol 9:27

    Article  Google Scholar 

  33. Kou L, Sun R, Bhutia YD, Yao Q, Chen R (2018) Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv 15(9):869–879

    Article  CAS  Google Scholar 

  34. Lakkim V, Reddy MC, Pallavali RR, Reddy KR, Reddy CV, Inamuddin B et al (2020) Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics 9(12):902

    Article  CAS  Google Scholar 

  35. Lebedova J, Blahova L, Vecera Z, Mikuska P, Docekal B, Buchtova M et al (2016) Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ Sci Pollut Res Int 23(23):24047–24060

    Article  CAS  Google Scholar 

  36. Lee S-Y, Cheng J-X (2013) Clearance of nanoparticles during circulation. In: Gad SC (ed) Pharmaceutical sciences encyclopedia

    Google Scholar 

  37. Lefojane RP, Sone BT, Matinise N, Saleh K, Direko P, Mfengwana P, Mashele S, Maaza M, Sekhoacha MP (2021) CdO/CdCO3 nanocomposite physical properties and cytotoxicity against selected breast cancer cell lines. Sci Rep 11(1):30

    Article  CAS  Google Scholar 

  38. Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int 43(11):1245–1256

    Article  CAS  Google Scholar 

  39. Liu Y, Hardie J, Zhang X, Rotello VM (2017) Effects of engineered nanoparticles on the innate immune system. Semin Immunol 34:25–32

    Article  CAS  Google Scholar 

  40. Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194

    Article  CAS  Google Scholar 

  41. Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H et al (2020) Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 156:188–213

    Google Scholar 

  42. Meir R, Popovtzer R (2018) Cell tracking using gold nanoparticles and computed tomography imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(2). https://doi.org/10.1002/wnan.1480

  43. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP et al (2014) Potential theranostics application of bio-synthesised silver nanoparticles (4-in-1 system). Theranostics 4(3):316–335

    Article  Google Scholar 

  44. Nunez C, Estevez SV, Del PilarChantada M (2018) Inorganic nanoparticles in diagnosis and treatment of breast cancer. J BiolInorg Chem 23(3):331–345

    CAS  Google Scholar 

  45. Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9:51–63

    Google Scholar 

  46. Parra-Nieto J, Del Cid M, de Carcer IA, Baeza A (2021) Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnol J 16(2):e2000150

    Article  Google Scholar 

  47. Paul W, Sharma CP (2019) Inorganic nanoparticles for targeted drug delivery. Biointegr Med Implant Mater 333–373

    Google Scholar 

  48. Pissuwan D (2017) Monitoring and tracking metallic nanobiomaterials in vivo. In: Monitoring and evaluation of biomaterials and their performance in vivo. Woodhead Publishing, pp 135–149

    Google Scholar 

  49. Roche B, Vanden-Bossche A, Normand M, Malaval L, Vico L, Lafage-Proust MH (2013) Validated laser doppler protocol for measurement of mouse bone blood perfusion—response to age or ovariectomy differs with genetic background. Bone 55(2):418–426

    Article  Google Scholar 

  50. Sadhukhan S, Ghosh TK, Roy I, Rana D, Bhattacharyya A, Saha R et al (2019) Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties. Mater Sci Eng C 99:696–709

    Article  CAS  Google Scholar 

  51. Shi Y, van der Meel R, Chen X, Lammers T (2020) The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10(17):7921–7924

    Article  Google Scholar 

  52. Shityakov S, Forster C (2013) Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study. Int J Comput Biol Drug Des 6(4):343–357

    Article  CAS  Google Scholar 

  53. Singh MS, Lamprecht A (2016) P-glycoprotein inhibition of drug resistant cell lines by nanoparticles. Drug Dev Ind Pharm 42(2):325–331

    Article  CAS  Google Scholar 

  54. Thanisha AV, Dinda AK, Koul V (2018) Evaluation of nano hydrogel composite based on gelatin/HA/CS suffused with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. Mater Sci Eng C Mater Biol Appl 89:378–386

    Article  Google Scholar 

  55. Vazquez-Munoz R, Meza-Villezcas A, Fournier P, Soria-Castro E, Juarez-Moreno K, Gallego-Hernandez AL et al (2019) Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE 14(11):e0224904

    Article  CAS  Google Scholar 

  56. Yang Q, Jacobs TM, McCallen JD, Moore DT, Huckaby JT, Edelstein JN et al (2016) Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal Chem 88(23):11804–11812

    Article  CAS  Google Scholar 

  57. Zahera M, Khan SA, Khan IA, Sharma RK, Sinha N, Al-Shwaiman HA et al (2020) Cadmium oxide nanoparticles: an attractive candidate for novel therapeutic approaches. Colloids Surf, A 585:124017

    Article  CAS  Google Scholar 

  58. Zhang K, Cheng Y, Ren W, Sun L, Liu C, Wang D et al (2018) Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv Sci 5(9):1800021

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chairman Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sajid Khan .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ateeq, H., Zia, A., Husain, Q., Khan, M.S. (2023). Role of Inorganic Nanocomposite Materials in Drug Delivery Systems. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_7

Download citation

Publish with us

Policies and ethics