Skip to main content

Advertisement

Log in

Nanoparticles for drug delivery in Parkinson’s disease

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Although effective symptomatic treatments for Parkinson’s disease (PD) have been available for some time, efficient and well-controlled drug delivery to the brain has proven to be challenging. The emergence of nanotechnology has created new opportunities not only for improving the pharmacokinetics of conventional therapies but also for developing novel treatment approaches and disease modifying therapies. Several exciting strategies including drug carrier nanoparticles targeting specific intracellular pathways and structural reconformation of tangled proteins as well as introducing reprogramming genes have already shown promise and are likely to deliver more tailored approaches to the treatment of PD in the future. This paper reviews the role of nanoparticles in PD including a discussion of both their composition and functional capacity as well as their potential to deliver better therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jankovic J (2002) Levodopa strengths and weaknesses. Neurology 58(4 Suppl 1):S19-32

    CAS  PubMed  Google Scholar 

  2. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346

    CAS  PubMed  Google Scholar 

  3. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Saraiva C et al (2016) Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    CAS  PubMed  Google Scholar 

  5. Jesus S et al (2019) Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front Bioeng Biotechnol 7:261

    PubMed  PubMed Central  Google Scholar 

  6. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl 80:771–784

    CAS  PubMed  Google Scholar 

  7. Elezaby RS et al (2017) Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 261:43–61

    CAS  PubMed  Google Scholar 

  8. Zhu Y, Liu C, Pang Z (2019) Dendrimer-based drug delivery systems for brain targeting. Biomolecules. https://doi.org/10.3390/biom9120790

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rekas A et al (2009) PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 9(3):230–238

    CAS  PubMed  Google Scholar 

  10. Milowska K et al (2015) Carbosilane dendrimers inhibit alpha-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm 484(1–2):268–275

    CAS  PubMed  Google Scholar 

  11. Mignani S et al (2017) Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 64:23–51

    CAS  Google Scholar 

  12. Bobo D et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387

    CAS  PubMed  Google Scholar 

  13. Tunn UW (2011) A 6-month depot formulation of leuprolide acetate is safe and effective in daily clinical practice: a non-interventional prospective study in 1273 patients. BMC Urol 11:15

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: An update. Bioeng Transl Med 4(3):e10143

    PubMed  PubMed Central  Google Scholar 

  15. Tapeinos C, Battaglini M, Ciofani G (2017) Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 264:306–332

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghasemiyeh P, Mohammadi-Sammani S (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 13(4):288–303

    PubMed  PubMed Central  Google Scholar 

  17. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966

    CAS  PubMed  Google Scholar 

  18. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu H et al (2020) Potential roles of exosomes in parkinson’s disease: from pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 8:86

    PubMed  PubMed Central  Google Scholar 

  20. Luo S, Du L, Cui Y (2020) Potential therapeutic applications and developments of exosomes in parkinson’s disease. Mol Pharm 17(5):1447–1457

    CAS  PubMed  Google Scholar 

  21. Saupe A et al (2005) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) – structural investigations on two different carrier systems. Biomed Mater Eng 15(5):393–402

    CAS  PubMed  Google Scholar 

  22. Iqbal MA et al (2012) Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 20(10):813–830

    CAS  PubMed  Google Scholar 

  23. Singh Y et al (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252:28–49

    CAS  PubMed  Google Scholar 

  24. Sheth T et al (2020) Multiple nanoemulsions. Nature Rev Mater 5(3):214–228

    Google Scholar 

  25. Stone NR et al (2016) Liposomal amphotericin B (AmBisome((R))): a review of the pharmacokinetics, pharmacodynamics clinical experience and future directions. Drugs 76(4):485–500

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rafiyath SM et al (2012) Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol. https://doi.org/10.1186/2162-3619-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun H et al (2020) Extracellular vesicles in the development of cancer therapeutics. Int J Mol Sci. https://doi.org/10.3390/ijms21176097

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen S et al (2016) Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol 12(1):1–27

    PubMed  Google Scholar 

  29. Sardar R et al (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851

    CAS  PubMed  Google Scholar 

  30. Niu S et al (2017) Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s Disease model. Theranostics 7(2):344–356

    CAS  PubMed  PubMed Central  Google Scholar 

  31. John AA et al (2015) Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine 10:4267–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maiti D et al (2018) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401

    CAS  PubMed  Google Scholar 

  33. Suchomel P et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8(1):4589

    PubMed  PubMed Central  Google Scholar 

  34. Palomäki J et al (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9):6861–6870

    PubMed  Google Scholar 

  35. 31P-MRS imaging to assess the effects of cnm-au8 on impaired neuronal Redox state in Parkinson's Disease (REPAIR-PD). 2019; Available from: https://clinicaltrials.gov/ct2/show/NCT03815916

  36. Therapeutic nanocatalysis to slow disease progression of amyotrophic lateral sclerosis (ALS) (RESCUE-ALS). 2019; Available from: https://clinicaltrials.gov/ct2/show/NCT04098406

  37. 31P-MRS imaging to assess the effects of CNM-Au8 on impaired neuronal redox state in multiple sclerosis (REPAIR-MS). 2019; Available from: https://clinicaltrials.gov/ct2/show/NCT03993171

  38. Khan AR et al (2018) Recent progress of drug nanoformulations targeting to brain. J Control Release 291:37–64

    CAS  PubMed  Google Scholar 

  39. Paul A, Yadav KS (2020) Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles. J Drug Delivery Sci Technol. https://doi.org/10.1016/j.jddst.2020.101790

    Article  Google Scholar 

  40. During MJ et al (1992) Biochemical and behavioral recovery in a rodent model of Parkinson’s disease following stereotactic implantation of dopamine-containing liposomes. Exp Neurol 115(2):193–199

    CAS  PubMed  Google Scholar 

  41. Di Stefano A et al (2004) Evaluation of rat striatal L-dopa and DA concentration after intraperitoneal administration of L-dopa prodrugs in liposomal formulations. J Control Release 99(2):293–300

    PubMed  Google Scholar 

  42. Di Stefano A et al (2006) Maleic- and fumaric-diamides of (O, O-diacetyl)-L-Dopa-methylester as anti-Parkinson prodrugs in liposomal formulation. J Drug Target 14(9):652–661

    PubMed  Google Scholar 

  43. Yang X et al (2012) Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomed 7:2077–2086

    CAS  Google Scholar 

  44. Gambaryan PY et al (2014) Increasing the efficiency of Parkinson’s Disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol 23(3):246–252

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma S, Lohan S, Murthy RS (2014) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40(7):869–878

    CAS  PubMed  Google Scholar 

  46. Li X et al (2019) Preparation of levodopa-loaded crystalsomes through thermally induced crystallization reverses functional deficits in Parkinsonian mice. Biomater Sci 7(4):1623–1631

    CAS  PubMed  Google Scholar 

  47. Arisoy S et al (2020) In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm Dev Technol 25(6):735–747

    CAS  PubMed  Google Scholar 

  48. Tan JPK et al (2019) Effective encapsulation of apomorphine into biodegradable polymeric nanoparticles through a reversible chemical bond for delivery across the blood-brain barrier. Nanomedicine 17:236–245

    CAS  PubMed  Google Scholar 

  49. Regnier-Delplace C et al (2013) PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. Int J Pharm 443(1–2):68–79

    CAS  PubMed  Google Scholar 

  50. Md S et al (2013) Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 48(3):393–405

    CAS  PubMed  Google Scholar 

  51. Ray S et al (2018) Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 48:21–29

    CAS  Google Scholar 

  52. Bi C et al (2016) Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomed 11:6547–6559

    CAS  Google Scholar 

  53. Tzeyung AS et al (2019) Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11010026

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang A et al (2012) Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats. Pharm Res 29(9):2367–2376

    CAS  PubMed  Google Scholar 

  55. Bali NR, Salve PS (2019) Selegiline nanoparticle embedded transdermal film: An alternative approach for brain targeting in Parkinson’s disease. J Drug Delivery Sci Technol 54:101299

    CAS  Google Scholar 

  56. Hua S et al (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    PubMed  PubMed Central  Google Scholar 

  57. Knop K et al (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308

    CAS  PubMed  Google Scholar 

  58. Tang S et al (2019) Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 26(1):700–707

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang Y-S et al (2016) Use of PEGylated immunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther 22(10):817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Qu M et al (2018a) A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release 277:173–182

    CAS  PubMed  Google Scholar 

  61. Wen CJ et al (2012) Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomed 7:1599–1611

    CAS  Google Scholar 

  62. Liu KS et al (2012) Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology 23(9):095103

    PubMed  Google Scholar 

  63. Wang F et al (2020) Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int J Pharm 577:119046

    CAS  PubMed  Google Scholar 

  64. Yan X et al (2018) Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int J Nanomed 13:273–281

    CAS  Google Scholar 

  65. Riddle MC (2016) Lessons from Peglispro: IMAGINE how to improve drug development and affordability. Diabetes Care 39(4):499–501

    PubMed  Google Scholar 

  66. Rehman S et al (2019) Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson’s disease treatment? Expert Opin Drug Deliv 16(12):1355–1366

    CAS  PubMed  Google Scholar 

  67. Pardeshi CV, Belgamwar VS (2019) Improved brain pharmacokinetics following intranasal administration of N, N, N-trimethyl chitosan tailored mucoadhesive NLCs. Mater Technol 35(5):249–266

    Google Scholar 

  68. Trapani A et al (2011) Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 419(1–2):296–307

    CAS  PubMed  Google Scholar 

  69. Raj R et al (2018) Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 109:27–35

    CAS  PubMed  Google Scholar 

  70. Lundh B, Brockstedt U, Kristensson K (1989) Lectin-binding pattern of neuroepithelial and respiratory epithelial cells in the mouse nasal cavity. Histochem J 21(1):33–43

    CAS  PubMed  Google Scholar 

  71. Wen Z et al (2011) Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release 151(2):131–138

    CAS  PubMed  Google Scholar 

  72. Gao X et al (2006) Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490

    CAS  PubMed  Google Scholar 

  73. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    CAS  PubMed  Google Scholar 

  74. Demeule M et al (2002) Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 38:339–348

    CAS  PubMed  Google Scholar 

  75. Kageyama T et al (2000) The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res 879(1):115–121

    CAS  PubMed  Google Scholar 

  76. Fillebeen C et al (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274(11):7011–7017

    CAS  PubMed  Google Scholar 

  77. Faucheux A et al (1995) Expression of lactogerrin receptors is increased in the mesencephalon of patients with Parkinson disease. Natl Acad Sci United States America 92(21):9603–9607

    CAS  Google Scholar 

  78. Suzuki YA, Lopez V, Lonnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62(22):2560–2575

    CAS  PubMed  Google Scholar 

  79. Abuirmeileh A et al (2007) The corticotrophin-releasing factor-like peptide urocortin reverses key deficits in two rodent models of Parkinson’s disease. Eur J Neurosci 26(2):417–423

    PubMed  Google Scholar 

  80. Hu K et al (2011) Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 415(1–2):273–283

    CAS  PubMed  Google Scholar 

  81. Huang R et al (2010) Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 290(1–2):123–130

    CAS  PubMed  Google Scholar 

  82. Huang R et al (2013) Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res 30(10):2549–2559

    CAS  PubMed  Google Scholar 

  83. Tang SC et al (2016) ANG1005, a novel peptide-paclitaxel conjugate crosses the BBB and shows activity in patients with recurrent CNS metastasis from breast cancer, results from a phase II clinical study. Ann Oncol. https://doi.org/10.1093/annonc/mdw367.02

    Article  PubMed  PubMed Central  Google Scholar 

  84. A randomized open-label, Multi-Center Pivotal Study of ANG1005 Compared With Physician’s Best Choice in HER2-Negative Breast Cancer Patients with Newly Diagnosed Leptomeningeal Carcinomatosis and Previously Treated Brain Metastases (ANGLeD). 2018 7 September, 2020; Available from: https://clinicaltrials.gov/ct2/show/NCT03613181

  85. Wilson B et al (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–84

    CAS  PubMed  Google Scholar 

  86. Fisher DG, Price RJ (2019) Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system. Front Pharmacol 10:1348

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin CY et al (2016) Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J Control Release 235:72–81

    CAS  PubMed  Google Scholar 

  88. Yue P et al (2018) Ultrasound-triggered effects of the microbubbles coupled to GDNF plasmid-loaded PEGylated liposomes in a rat model of Parkinson’s disease. Front Neurosci 12:222

    PubMed  PubMed Central  Google Scholar 

  89. Anti-EGFR-immunoliposomes Loaded with Doxorubicin in Patients with Advanced Triple Negative EGFR Positive Breast Cancer. 2016; Available from: https://clinicaltrials.gov/ct2/show/NCT02833766

  90. Mamot C et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638

    CAS  PubMed  Google Scholar 

  91. Wolfram J, Ferrari M (2019) Clinical cancer nanomedicine. Nano Today 25:85–98

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Celsion corporation to continue following patients in Phase III OPTIMA Study for Overall Survival. 2020; Available from: https://investor.celsion.com/news-releases/news-release-details/celsion-corporation-continue-following-patients-phase-iii-optima

  93. Elkouzi A et al (2019) Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat Rev Neurol 15(4):204–223

    PubMed  PubMed Central  Google Scholar 

  94. Levin J et al (2019) Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 18(8):724–735

    CAS  PubMed  Google Scholar 

  95. Malar DS et al (2020) Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s disease: a review. Molecules. https://doi.org/10.3390/molecules25173926

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li Y et al (2018) “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 8(19):5469–5481

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao G et al (2019) Gold nanoclusters for Parkinson’s disease treatment. Biomaterials 194:36–46

    CAS  PubMed  Google Scholar 

  98. Srivastava AK, Roy Choudhury S, Karmakar S (2020) Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy. Biomater Sci 8(5):1345–1363

    CAS  PubMed  Google Scholar 

  99. Parkinson Study Group Q.E.I. et al (2014) A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 71(5): 543–52

  100. Anand P et al (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    CAS  PubMed  Google Scholar 

  101. Sikorska M et al (2014) Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol Aging 35(10):2329–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang N et al (2018) Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 8(8):2264–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Xue Y et al (2020) Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J Mater Sci Technol 43:197–207

    Google Scholar 

  104. Chen T et al (2019) Nanoparticles Mediating the Sustained Puerarin Release Facilitate Improved Brain Delivery to Treat Parkinson’s Disease. ACS Appl Mater Interfaces 11(48):45276–45289

    CAS  PubMed  Google Scholar 

  105. Xiong S et al (2019) Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-parkinsonian efficacy. Mol Pharm 16(4):1444–1455

    CAS  PubMed  Google Scholar 

  106. Ho KS, Hotchkin MT, Mortenson MT (2019) Gold nanocatalysis as a novel therapeutic for neuroprotection in Parkinson's disease. In Program no. 743.04. 2019 neuroscience meeting planner. Society for Neuroscience, Chicago, IL. https://www.abstractsonline.com/pp8/#!/7883/presentation/57120

  107. Nunez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel). https://doi.org/10.3390/ph11040109

    Article  Google Scholar 

  108. Martin-Bastida A et al (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7(1):1398

    PubMed  PubMed Central  Google Scholar 

  109. You L et al (2018) Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano 12(5):4123–4139

    CAS  PubMed  Google Scholar 

  110. Hu K et al (2018) Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine 14(4):1123–1136

    CAS  PubMed  Google Scholar 

  111. Izco M et al (2019) Systemic exosomal delivery of shRNA minicircles prevents Parkinsonian pathology. Mol Ther 27(12):2111–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mead BP et al (2016) Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release 223:109–117

    CAS  PubMed  Google Scholar 

  113. Darquet AM et al (1997) A new DNA vehicle for nonviral gene delivery:supercoiled minicircle. Gene Therapy 4:1341–1349

    CAS  PubMed  Google Scholar 

  114. Kojima R et al (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 9(1):1305

    PubMed  PubMed Central  Google Scholar 

  115. Accomasso L, Cristallini C, Giachino C (2018) Risk assessment and risk minimization in nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol 9:228

    PubMed  PubMed Central  Google Scholar 

  116. Beloqui A et al (2016) Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomed Nanotechnol Biol Med 12(1):143–161

    CAS  Google Scholar 

  117. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    CAS  PubMed  Google Scholar 

  118. Wang ZY et al (2019) Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov Today 24(2):595–605

    CAS  PubMed  Google Scholar 

  119. Ghosh P et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    CAS  PubMed  Google Scholar 

  120. Suk JS et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    CAS  PubMed  Google Scholar 

  121. Cao X et al (2016) Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 49(1):32

    PubMed  PubMed Central  Google Scholar 

  122. Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    CAS  PubMed  Google Scholar 

  123. Sridhar V et al (2018) Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine 14(8):2609–2618

    CAS  PubMed  Google Scholar 

  124. Lopalco A et al (2018) Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nanomaterials (Basel). https://doi.org/10.3390/nano8030178

    Article  Google Scholar 

  125. Qu M et al (2018b) Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release 287:156–166

    CAS  PubMed  Google Scholar 

Download references

Funding

SJGL is supported by an NHMRC Leadership Fellowship (#1195830), as well as funding to ForeFront, a collaborative research group at the Brain and Mind Centre University of Sydney, from NHMRC program (#1132524), Dementia Research Team (#1095127), CogSleep Centre of Research Excellence (#1152945) grants.

Author information

Authors and Affiliations

Authors

Contributions

JB was responsible for drafting and revision of the manuscript and JEJ for revision of the manuscript. SJGL was responsible for concept and revision of the manuscript.

Corresponding author

Correspondence to Jonathan Baskin.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskin, J., Jeon, J.E. & Lewis, S.J.G. Nanoparticles for drug delivery in Parkinson’s disease. J Neurol 268, 1981–1994 (2021). https://doi.org/10.1007/s00415-020-10291-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10291-x

Keywords

Navigation