Skip to main content

Synthesis and Biomedical Application of Coinage-Metal Nanoparticle and Their Composite

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 245 Accesses

Abstract

Coinage metal nanoparticles including gold, silver, and copper are absorbed due to their size and shape-dependent distinct optoelectronic and chemical properties, in addition to their effective use in health-related applications. Among these nanoparticles, Because of their ease of fabrication, characterization, as well as surface modification, Au NPs have triggered a lot of interest in crucial biological applications. Coinage metal nanoparticles provide a robust platform for solving health-related problems because of their outstanding physical and chemical properties. Stable and biocompatible coinage metals NPs have been employed with targeted drug delivery and killing cancerous cells, diagnosing several types of cancers pharmacological applications, i.e., sensing probes, therapeutic agents, and drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahearn DG, May LL, Gabriel MM (1995) Adherence of organisms to silver-coated surfaces. J Ind Microbiol 15(4):372–376

    Article  CAS  Google Scholar 

  2. Ali MR, Ibrahim IM, Ali HR, Selim SA, El-Sayed MA (2016) Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. Int J Nanomed 11:4849–4863. https://doi.org/10.2147/IJN.S109470

    Article  CAS  Google Scholar 

  3. Ali MRK et al (2019) Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 123(25):15375–15393. https://doi.org/10.1021/acs.jpcc.9b01961

  4. Allaker RP, Ren G (2008) Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 102(1):1–2

    Article  Google Scholar 

  5. Angajala G et al (2014) One-step biofabrication of copper nanoparticles from Aegle marmelos Correa aqueous leaf extract and evaluation of its anti-inflammatory and mosquito larvicidal efficacy. RSC Adv 4(93):51459–51470

    Article  CAS  Google Scholar 

  6. Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24(8):4340–4346

    Article  CAS  Google Scholar 

  7. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three-component iodinated chitosan-silver nanoparticle composite. Langmuir ACS J Surf Colloids 26(8):5901–5908. https://doi.org/10.1021/la9038528

  8. Brown SD et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684. https://doi.org/10.1021/ja908117a

    Article  CAS  Google Scholar 

  9. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

    Article  CAS  Google Scholar 

  10. Chang SY, Huang KY, Chao TL, Kao HC, Pang YH, Lu L, Chiu CL, Huang HC, Cheng TR, Fang JM, Yang PC (2021) Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci Rep 11(1):8692. https://doi.org/10.1038/s41598-021-87254-3

    Article  CAS  Google Scholar 

  11. Cheirmadurai K, Biswas S, Murali R, Thanikaivelan P (2014) Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv 4(37):19507–19511. https://doi.org/10.1039/C4RA01414F

    Article  CAS  Google Scholar 

  12. Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116(5):2826–2885. https://doi.org/10.1021/acs.chemrev.5b00148

    Article  CAS  Google Scholar 

  13. Cioffi N et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  14. Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057

    Article  CAS  Google Scholar 

  15. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831

    Article  Google Scholar 

  16. Dhanalekshmi KI, Magesan P, Sangeetha K, Zhang X, Jayamoorthy K, Srinivasan N (2019) Preparation and characterization of core-shell type Ag@SiO2 nanoparticles for photodynamic cancer therapy. Photodiagn Photodyn Ther 28:324–329. https://doi.org/10.1016/j.pdpdt.2019.10.006

    Article  CAS  Google Scholar 

  17. Dhanalekshmi KI, Sangeetha K, Magesan P, Johnson J, Zhang X, Jayamoorthy K (2020) Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. J Biomol Struct Dyn 1–8. https://doi.org/10.1080/07391102.2020.1858965

  18. Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BLV (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem A Eur J 14(33):10244–10250. https://doi.org/10.1002/chem.200801093

    Article  CAS  Google Scholar 

  19. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther J Am Soc Gene Ther 22(6):1075–1083. https://doi.org/10.1038/mt.2014.30

    Article  CAS  Google Scholar 

  20. Dong L, Ji G, Liu Y, Xu X, Lei P, Du K, Song S, Feng J, Zhang H (2018) Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo. Nanoscale 10(2):825–831. https://doi.org/10.1039/c7nr07263e

    Article  CAS  Google Scholar 

  21. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. https://doi.org/10.1039/c1cs15237h

    Article  CAS  Google Scholar 

  22. Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA (2009) Tamoxifen-poly (ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem 20(12):2247–2253. https://doi.org/10.1021/bc9002212

    Article  CAS  Google Scholar 

  23. Duan R, Zhou Z, Su G, Liu L, Guan M, Du B, Zhang Q (2014) Chitosan-coated gold nanorods for cancer therapy combining chemical and photothermal effects. Macromol Biosci 14(8):1160–1169. https://doi.org/10.1002/mabi.201300563

    Article  CAS  Google Scholar 

  24. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799. https://doi.org/10.1016/j.nano.2015.11.016

    Article  CAS  Google Scholar 

  25. Elahi N, Mehdi KM, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556

    Article  CAS  Google Scholar 

  26. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  CAS  Google Scholar 

  27. Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328

    Article  CAS  Google Scholar 

  28. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans 147:145–181

    Article  Google Scholar 

  29. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  Google Scholar 

  30. Gad SC, Sharp KL, Montgomery C, Payne JD, Goodrich GP (2012) Evaluation of the toxicity of intravenous delivery of auroshell particles (gold–silica nanoshells). Int J Toxicol 31(6):584–594. https://doi.org/10.1177/1091581812465969

    Article  CAS  Google Scholar 

  31. Gamaleia NF, Shishko ED, Dolinsky GA, Shcherbakov AB, Usatenko AV, Kholin VV (2010) Photodynamic activity of hematoporphyrin conjugates with gold nanoparticles: experiments in vitro. Exp Oncol 32(1):44–47

    CAS  Google Scholar 

  32. García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA (2018) Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 512:249–259. https://doi.org/10.1016/j.jcis.2017.10.030

    Article  CAS  Google Scholar 

  33. Gharatape A, Davaran S, Salehi R, Hamishehkar H (2016) Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 6(112):111482–111516. https://doi.org/10.1039/c6ra18760a

    Article  CAS  Google Scholar 

  34. Ghiuță I, Cristea D (2020) Silver nanoparticles for delivery purposes. In: Nanoengineered biomaterials for advanced drug delivery, pp 347–371. https://doi.org/10.1016/B978-0-08-102985-5.00015-2

  35. Ghosh S, Kaushik R, Nagalakshmi K, Hoti SL, Menezes GA, Harish BN, Vasan HN (2010) Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohyd Res 345(15):2220–2227

    Article  CAS  Google Scholar 

  36. Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B 63(1):103–113

    Article  CAS  Google Scholar 

  37. Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir ACS J Surf Colloids 22(22):9322–9328

    Google Scholar 

  38. Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ (2020) Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.09.008

    Article  Google Scholar 

  39. Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427

    Article  Google Scholar 

  40. Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413

    Google Scholar 

  41. Haimov E, Weitman H, Polani S, Schori H, Zitoun D, Shefi O (2018) meso-Tetrahydroxyphenylchlorin-conjugated gold nanoparticles as a tool to improve photodynamic therapy. ACS Appl Mater Interfaces 10(3):2319–2327. https://doi.org/10.1021/acsami.7b16455

    Article  CAS  Google Scholar 

  42. Horie M, Ogawa H, Yoshida Y et al (2008) Inactivation and morphological changes of avian influenza virus by copper ions. Adv Virol 153(8):1467–1472

    CAS  Google Scholar 

  43. Horlings RK, Terra JB, Witjes MJ (2015) mTHPC mediated, systemic photodynamic therapy (PDT) for nonmelanoma skin cancers: case and literature review. Lasers Surg Med 47(10):779–787. https://doi.org/10.1002/lsm.22429

    Article  Google Scholar 

  44. Jagajjanani Rao K, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48(2):628–634

    Article  CAS  Google Scholar 

  45. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 12:2957–2978. https://doi.org/10.2147/IJN.S127683

    Article  CAS  Google Scholar 

  46. Kah JC, Chen J, Zubieta A, Hamad-Schifferli K (2012) Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6(8):6730–6740. https://doi.org/10.1021/nn301389c

    Article  CAS  Google Scholar 

  47. Kim C, Ghosh P, Rotello VM (2009) Multimodal drug delivery using gold nanoparticles. Nanoscale 1(1):61–67

    Article  CAS  Google Scholar 

  48. Kim YH et al (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110(49):24923–24928

    Article  CAS  Google Scholar 

  49. Konan YN, Gurny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66(2):89–106

    Article  CAS  Google Scholar 

  50. Kumari K, Singh P, Bauddh K, Sweta, Mallick S, Chandra R (2019) Implications of metal nanoparticles on aquatic fauna: a review. Nanosci Nanotechnol Asia 9(1):30–43

    Google Scholar 

  51. Lai HZ, Chen WY, Wu CY, Chen YC (2015) Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl Mater Interfaces 7:2046–2054. https://doi.org/10.1021/am507919m

    Article  CAS  Google Scholar 

  52. Lee C, Gaston MA, Weiss AA, Zhang P (2013) Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens Bioelectron 42:236–241. https://doi.org/10.1016/j.bios.2012.10.067

    Article  CAS  Google Scholar 

  53. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. https://doi.org/10.1021/jp062536y

    Article  CAS  Google Scholar 

  54. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  55. LewisOscar F, Mubarak Ali D, Nithya C, Priyanka R, Gopinath V, Alharbi NS et al (2015) One-pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 31:379–391. https://doi.org/10.1080/08927014.2015.1048686

    Article  CAS  Google Scholar 

  56. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  57. Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L (2010) Colorimetric sensing of silver(I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837. https://doi.org/10.1021/ac1007909

    Article  CAS  Google Scholar 

  58. Lin J et al (2013) Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7(6):5320–5329

    Article  CAS  Google Scholar 

  59. Liu Y, Li F, Guo Z, Xiao Y et al (2019) Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem Eng J 122990. https://doi.org/10.1016/j.cej.2019.122990

  60. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7(2):26–31. https://doi.org/10.1016/s1369-7021(04)00080-x

    Article  Google Scholar 

  61. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  Google Scholar 

  62. Lu HD, Wang LZ, Wilson BK et al (2018) Copper loading of preformed nanoparticles for PET-imaging applications. ACS Appl Mater Interfaces 10(4):3191–3199. https://doi.org/10.1021/acsami.7b07242

    Article  CAS  Google Scholar 

  63. Ma L, Li L, Li X, Deng L, Zheng H et al (2016) Silver sulfide nanoparticles as photothermal transducing agents for cancer treatment. J Nanomater Mol Nanotechnol 5:2. https://doi.org/10.4172/2324-8777.1000182

    Article  Google Scholar 

  64. Mackey MA, Ali MRK, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326. https://doi.org/10.1021/jp409298f

    Article  CAS  Google Scholar 

  65. Majumdar KC, Sinha B (2014) Coinage metals (Cu, Ag and Au) in the synthesis of natural products. RSC Adv 4(16):8085–8120

    Article  CAS  Google Scholar 

  66. Mallick S, Sabui P (2021) Green synthesis of copper and copper-based nanoparticles for their use in medicine. In: Rai M, Patel M, Patel R (eds) Nanotechnology in medicine, pp 174–194

    Google Scholar 

  67. Mallick S et al (2021) Bionanomaterials utility for therapeutic applications. In: Bionanomaterials. IOP Publishing: 7-1-7-29

    Google Scholar 

  68. Mallick S, Mukhi P, Kumari P, Mahato KR, Verma SK, Das D (2019) Synthesis, characterization and catalytic application of starch supported cuprous iodide nanoparticles. Catal Lett 149(12):3501–3507

    Article  CAS  Google Scholar 

  69. Mallick S, Sanpui P, Ghosh SS et al (2015) Synthesis, characterization and enhanced bactericidal action of chitosan supported core-shell copper-silver nanoparticle composite. RSC Adv 5(16):12268–12276

    Article  CAS  Google Scholar 

  70. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4(3):1313–1323

    Article  CAS  Google Scholar 

  71. Meena KS, Dhanalekshmi KI, Jayamoorthy K (2016) Study of photodynamic activity of Au@SiO2 core-shell nanoparticles in vitro. Mater Sci Eng C 63:317–322

    Article  CAS  Google Scholar 

  72. Merkel TJ et al (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26(16):13086–13096

    Article  CAS  Google Scholar 

  73. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445. https://doi.org/10.1002/andp.19083300302

    Article  CAS  Google Scholar 

  74. Mohammed Fayaz A, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46:636–641. https://doi.org/10.1016/j.procbio.2010.11.001

    Article  CAS  Google Scholar 

  75. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  Google Scholar 

  76. Nagar N, Devra V (2018) Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater Chem Phys 213:44–51

    Article  CAS  Google Scholar 

  77. Nagy-Simon T, Potara M, Craciun A-M, Licarete E, Astilean S (2018) IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging. J Colloid Interface Sci 517:239–250. https://doi.org/10.1016/j.jcis.2018.02.007

    Article  CAS  Google Scholar 

  78. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085

    Article  CAS  Google Scholar 

  79. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  80. Pattani VP, Shah J, Atalis A, Sharma A, Tunnell JW (2015) Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy. J Nanopart Res 17(1):20

    Article  Google Scholar 

  81. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607. https://doi.org/10.3389/fmicb.2016.00607

    Article  Google Scholar 

  82. Prajapati JP, Das D, Katlakunta S, Maramu N, Ranjan V, Mallick S (2021) Synthesis and characterization of ultrasmall Cu2O nanoparticles on silica nanoparticles surface. Inorg Chim Acta 515:120069

    Article  CAS  Google Scholar 

  83. Rajpurohit AS, Punde NS, Srivastava AK (2019) An electrochemical sensor for the simultaneous detection of potential diabetic biomarkers: methylglyoxal and its detoxification enzyme Glyoxalase employing copper oxide/gold nanoparticles modified electrode. New J Chem 43:16572–16582. https://doi.org/10.1039/c9nj03553b

    Article  CAS  Google Scholar 

  84. Rastinehad AR et al (2019) Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci 116(37):18590–18596

    Article  CAS  Google Scholar 

  85. Ravi SS, Christena LR, Sai Subramanian N, Anthony SP (2013) Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst 138(15):4370. https://doi.org/10.1039/c3an00320e

    Article  CAS  Google Scholar 

  86. Raj SI, Jaiswal A, Uddin I (2020) Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Adv 10(24):14050–14059

    Article  CAS  Google Scholar 

  87. Rivas Aiello MB, Castrogiovanni D, Parisi J et al (2018) Photodynamic therapy in HeLa cells incubated with riboflavin and pectin-coated silver nanoparticles. Photochem Photobiol 94(6):1159–1166. https://doi.org/10.1111/php.12974

    Article  CAS  Google Scholar 

  88. Roshmi T, Soumya KR, Jyothis M, Radhakrishnan EK (2015) Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bull 48:63–71. https://doi.org/10.1007/s13404-015-0162-4

    Article  CAS  Google Scholar 

  89. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  Google Scholar 

  90. Sabela M, Balme S, Bechelany M, Janot J-M, Bisetty K (2017) A Review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 19(12):1700270. https://doi.org/10.1002/adem.201700270

    Article  CAS  Google Scholar 

  91. Sanpui P et al (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124(2):142–146

    Article  CAS  Google Scholar 

  92. Senge MO, Brandt JC (2011) Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl) chlorin)—a second-generation photosensitizer. Photochem Photobiol 87(6):1240–1296. https://doi.org/10.1111/j.1751-1097.2011.00986.x

    Article  CAS  Google Scholar 

  93. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145(1):83–96

    Article  CAS  Google Scholar 

  94. Sharma RK et al (2012) Preparation of gold nanoparticles using tea: a green chemistry experiment. J Chem Educ 89(10):1316–1318

    Article  CAS  Google Scholar 

  95. Tao Y, Ju E, Liu Z, Dong K, Ren J, Qu X (2014) Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials 35(24):6646–6656. https://doi.org/10.1016/j.biomaterials.2014.04.073

    Article  CAS  Google Scholar 

  96. Vankayala R, Huang Y-K, Kalluru P, Chiang C-S, Hwang KC (2014) First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red-light activation. Small 10:1612–1622

    Article  CAS  Google Scholar 

  97. Vargas A, Pegaz B, Debefve E, Konan-Kouakou Y, Lange N, Ballini JP, van den Bergh H, Gurny R, Delie F (2004) Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharmaceut 286(1–2):131–145. https://doi.org/10.1016/j.ijpharm.2004.07.029

  98. Vijayaraghavan P, Liu C-H, Vankayala R, Chiang C-S, Hwang KC (2014) Designing multibranched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater 26(39):6689–6695. https://doi.org/10.1002/adma.201400703

    Article  CAS  Google Scholar 

  99. Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692. https://doi.org/10.1021/nn200007z

    Article  CAS  Google Scholar 

  100. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124. https://doi.org/10.1038/nature03968

    Article  CAS  Google Scholar 

  101. Wei Y et al (2010) Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C 114(37):15612–15616

    Article  CAS  Google Scholar 

  102. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  Google Scholar 

  103. World Health Organization (2008) The global burden of disease: 2004 update. World Health Organization. https://apps.who.int/iris/handle/10665/43942

  104. Yang W et al (2019) Gold nanoparticle based photothermal therapy: development and application for effective cancer treatment. Sustain Mater Technol 22:e00109

    CAS  Google Scholar 

  105. Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13(5):2163–2171. https://doi.org/10.1021/nl400653s

    Article  CAS  Google Scholar 

  106. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  CAS  Google Scholar 

  107. Yuan YG, Peng QL, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed 12:6487–6502

    Article  CAS  Google Scholar 

  108. Zhang X, Gurunathan S (2016) Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int J Nanomed 11:3655–3675

    Article  CAS  Google Scholar 

  109. Zhang Z et al (2014) Near-infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136(20):7317–7326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadhucharan Mallick or Adhish Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabui, P., Mallick, S., Jaiswal, A. (2023). Synthesis and Biomedical Application of Coinage-Metal Nanoparticle and Their Composite. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_6

Download citation

Publish with us

Policies and ethics