Skip to main content

Carbon and Metal Doped Polyaniline (PANI) for Energy Storage

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 271 Accesses

Abstract

With the depletion of traditional fossil fuels, rising pollution levels and fast growth of the global economy. New technology for energy conversion and storage, as well as efficient, sustainable energy sources, are all urgently needed. The development of supercapacitors (SCs) as an energy storage device has received a lot of interest in recent years. SCs are comparable to dielectric capacitors in terms of their high-power density, cyclic stability, and discharge rate. In addition, a high energy density that is comparable to batteries. In this chapter, polyaniline (PANI) based materials for electrochemical supercapacitor (ESs) electrodes are thoroughly reviewed. Pure PANI electrodes have low cycle life, low power density, and poor mechanical stability resulting from the swelling and shrinkage during the charging and discharging processes. Nevertheless, the development of nanocomposite of PANI with carbon materials or metal compounds could overcome the drawbacks of pure PANI and achieve higher electrochemical performance. Capacitance, energy, power, cycle performance, and rate capability have all been used to evaluate the performance of nanocomposites.

Graphical Abstract

See Scheme 1.

Electrode materials of supercapacitor with advantages and disadvantages [35]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali F, Liu X, Zhou D, Yang X, Xu J, Schenk T, Müller J, Schroeder U, Cao F, Dong X (2017) Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J Appl Phys 122(14):144105. https://doi.org/10.1063/1.4989908

    Article  CAS  Google Scholar 

  2. Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH (2017) Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem Eng J 308:1174–1184. https://doi.org/10.1016/j.cej.2016.10.015

    Article  CAS  Google Scholar 

  3. Bélanger D, Brousse T, Long J (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17(1):49–52. https://doi.org/10.1149/2.f07081if

    Article  Google Scholar 

  4. Bigdeli H, Moradi M, Borhani S, Jafari EA, Hajati S, Kiani MA (2018) One-pot electrochemical growth of sponge-like polyaniline-intercalated phosphorous-doped graphene oxide on nickel foam as binder-free electrode material of supercapacitor. Phys E 100:45–53. https://doi.org/10.1016/j.physe.2018.03.003

    Article  CAS  Google Scholar 

  5. Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5(24):12905–12910. https://doi.org/10.1021/am403444v

    Article  CAS  Google Scholar 

  6. Cao Z, Wei B (2013) A perspective: carbon nanotube macro-films for energy storage. Energy Environ Sci 6(11):3183–3201. https://doi.org/10.1039/C3EE42261E

    Article  CAS  Google Scholar 

  7. Chen S, Yang G, Jia Y, Zheng H (2016) Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem 3(9):1490–1496. https://doi.org/10.1002/celc.201600316

    Article  CAS  Google Scholar 

  8. Chen W, Rakhi RB, Alshareef HN (2013) Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures. J Phys Chem C 117(29):15009–15019. https://doi.org/10.1021/jp405300p

    Article  CAS  Google Scholar 

  9. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548

    Article  CAS  Google Scholar 

  10. Dhawale DS, Dubal DP, Jamadade VS, Salunkhe RR, Lokhande CD (2010a) Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application. Synth Met 160(5):519–522. https://doi.org/10.1016/j.synthmet.2010.01.021

    Article  CAS  Google Scholar 

  11. Dhawale DS, Salunkhe RR, Jamadade VS, Dubal DP, Pawar SM, Lokhande CD (2010b) Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Curr Appl Phys 10(3):904–909. https://doi.org/10.1016/j.cap.2009.10.020

    Article  Google Scholar 

  12. Dong S, Chen X, Gu L, Zhou X, Li L, Liu Z, Han P, Xu H, Yao J, Wang H, Zhang X, Shang C, Cui G, Chen L (2011) One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ Sci 4(9):3502–3508. https://doi.org/10.1039/C1EE01399H

    Article  CAS  Google Scholar 

  13. Du P, Dong Y, Kang H, Yang X, Wang Q, Niu J, Wang S, Liu P (2018) Graphene-wrapped polyaniline nanowire array modified functionalized of carbon cloth for high-performance flexible solid-state supercapacitor. ACS Sustain Chem Eng 6(11):14723–14733. https://doi.org/10.1021/acssuschemeng.8b03278

    Article  CAS  Google Scholar 

  14. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  15. Gao H, Wu F, Wang X, Hao C, Ge C (2018) Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor. Int J Hydrogen Energy 43(39):18349–18362. https://doi.org/10.1016/j.ijhydene.2018.08.018

    Article  CAS  Google Scholar 

  16. Gao Z, Yang J, Huang J, Xiong C, Yang Q (2017) A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors. Nanoscale 9(45):17710–17716. https://doi.org/10.1039/C7NR06847F

    Article  CAS  Google Scholar 

  17. Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P, Shelke M, Ogale S (2016) 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci Rep 6:21002. https://doi.org/10.1038/srep21002. https://www.nature.com/articles/srep21002#supplementary-information

  18. Ghenaatian HR, Mousavi MF, Rahmanifar MS (2012) High performance hybrid supercapacitor based on two nanostructured conducting polymers: Self-doped polyaniline and polypyrrole nanofibers. Electrochim Acta 78:212–222

    Article  CAS  Google Scholar 

  19. Goubard-Bretesché N, Crosnier O, Buvat G, Favier F, Brousse T (2016) Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J Power Sources 326:695–701. https://doi.org/10.1016/j.jpowsour.2016.04.075

    Article  CAS  Google Scholar 

  20. Guan B, Hu L, Zhang G, Guo D, Fu T, Li J, Duan H, Li C, Li Q (2014) Facile synthesis of ZnWO 4 nanowall arrays on Ni foam for high performance supercapacitors. RSC Adv 4(9):4212–4217

    Article  CAS  Google Scholar 

  21. Guan H, Fan L-Z, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56(2):964–968. https://doi.org/10.1016/j.electacta.2010.09.078

    Article  CAS  Google Scholar 

  22. Gupta V, Miura N (2005) Electrochemically deposited polyaniline nanowire’s network a high-performance electrode material for redox supercapacitor. Electrochem Solid-State Lett 8(12):A630–A632

    Article  CAS  Google Scholar 

  23. Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev 13(6):1513–1522. https://doi.org/10.1016/j.rser.2008.09.028

    Article  Google Scholar 

  24. Hashemi M, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB (2018) The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy 44:489–498. https://doi.org/10.1016/j.nanoen.2017.11.058

    Article  CAS  Google Scholar 

  25. He S, Hu X, Chen S, Hu H, Hanif M, Hou H (2012) Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. J Mater Chem 22(11):5114–5120. https://doi.org/10.1039/C2JM15668G

    Article  CAS  Google Scholar 

  26. Holdren JP (1991) Population and the energy problem. Popul Environ 12(3):231–255. https://doi.org/10.1007/BF01357916

    Article  Google Scholar 

  27. Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2(39):16516–16522. https://doi.org/10.1039/C4TA03332A

    Article  CAS  Google Scholar 

  28. Huang K-J, Wang L, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594. https://doi.org/10.1016/j.electacta.2013.07.168

    Article  CAS  Google Scholar 

  29. Hussain S, Kovacevic E, Amade R, Berndt J, Pattyn C, Dias A, Boulmer-Leborgne C, Ammar M-R, Bertran-Serra E (2018) Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications. Electrochim Acta 268:218–225. https://doi.org/10.1016/j.electacta.2018.02.112

    Article  CAS  Google Scholar 

  30. Jabeen N, Xia Q, Yang M, Xia H (2016) Unique core-shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 8(9):6093–6100. https://doi.org/10.1021/acsami.6b00207

    Article  CAS  Google Scholar 

  31. Ji J, Li R, Li H, Shu Y, Li Y, Qiu S, He C, Yang Y (2018) Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Compos B Eng 155:132–137. https://doi.org/10.1016/j.compositesb.2018.08.037

    Article  CAS  Google Scholar 

  32. Jin K, Zhang W, Wang Y, Guo X, Chen Z, Li L, Zhang Y, Wang Z, Chen J, Sun L, Zhang T (2018) In–situ hybridization of polyaniline nanofibers on functionalized reduced graphene oxide films for high-performance supercapacitor. Electrochim Acta 285:221–229. https://doi.org/10.1016/j.electacta.2018.07.220

    Article  CAS  Google Scholar 

  33. Ke F, Liu Y, Xu H, Ma Y, Guang S, Zhang F, Lin N, Ye M, Lin Y, Liu X (2017) Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Compos Sci Technol 142:286–293. https://doi.org/10.1016/j.compscitech.2017.02.026

    Article  CAS  Google Scholar 

  34. Kolathodi MS, Palei M, Natarajan TS, Singh G (2020) MnO2 encapsulated electrospun TiO2 nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology 31(12):125401. https://doi.org/10.1088/1361-6528/ab5d64

    Article  CAS  Google Scholar 

  35. Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Google Scholar 

  36. Kumar RD, Karuppuchamy S (2014) Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications. Ceram Int 40(8):12397–12402

    Article  Google Scholar 

  37. Li G-R, Feng Z-P, Zhong J-H, Wang Z-L, Tong Y-X (2010a) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43(5):2178–2183. https://doi.org/10.1021/ma902317k

    Article  CAS  Google Scholar 

  38. Li J, Xiao D, Ren Y, Liu H, Chen Z, Xiao J (2019a) Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials. Electrochim Acta 300:193–201. https://doi.org/10.1016/j.electacta.2019.01.089

    Article  CAS  Google Scholar 

  39. Li S, Gao A, Yi F, Shu D, Cheng H, Zhou X, He C, Zeng D, Zhang F (2019b) Preparation of carbon dots decorated graphene/polyaniline composites by supramolecular in-situ self-assembly for high-performance supercapacitors. Electrochim Acta 297:1094–1103. https://doi.org/10.1016/j.electacta.2018.12.036

    Article  CAS  Google Scholar 

  40. Li X, Li X, Dai N, Wang G, Wang Z (2010b) Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline. J Power Sources 195(16):5417–5421. https://doi.org/10.1016/j.jpowsour.2010.03.034

    Article  CAS  Google Scholar 

  41. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173. https://doi.org/10.1016/j.nanoen.2012.09.008

    Article  CAS  Google Scholar 

  42. Liu J, Du P, Wang Q, Liu D, Liu P (2019a) Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochim Acta 305:175–186. https://doi.org/10.1016/j.electacta.2019.03.049

    Article  CAS  Google Scholar 

  43. Liu L, Wang Y, Meng Q, Cao B (2017) A novel hierarchical graphene/polyaniline hollow microsphere as electrode material for supercapacitor applications. J Mater Sci 52(13):7969–7983. https://doi.org/10.1007/s10853-017-1000-2

    Article  CAS  Google Scholar 

  44. Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) Design and synthesis of CoMoO4-NiMoO4·xH 2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1(4):1380–1387. https://doi.org/10.1039/c2ta00163b

    Article  CAS  Google Scholar 

  45. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019b) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130. https://doi.org/10.1016/j.jpowsour.2019.03.094

    Article  CAS  Google Scholar 

  46. Liu T, Shao G, Ji M, Wang G (2015) Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition. Polym Compos 36(1):113–120. https://doi.org/10.1002/pc.22919

    Article  CAS  Google Scholar 

  47. Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloy Compd 682:381–403. https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  48. Ma L, Su L, Zhang J, Zhao D, Qin C, Jin Z, Zhao K (2016) A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J Electroanal Chem 777:75–84. https://doi.org/10.1016/j.jelechem.2016.07.033

    Article  CAS  Google Scholar 

  49. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H, Zhang Q, Guo Z (2017) Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J Mater Chem A 5(27):14041–14052. https://doi.org/10.1039/C7TA03279J

    Article  CAS  Google Scholar 

  50. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381. https://doi.org/10.1038/ncomms1387

    Article  CAS  Google Scholar 

  51. Majhi M, Choudhary RB, Thakur AK, Omar FS, Duraisamy N, Ramesh K, Ramesh S (2018) CoCl2-doped polyaniline composites as electrode materials with enhanced electrochemical performance for supercapacitor application. Polym Bull 75(4):1563–1578. https://doi.org/10.1007/s00289-017-2112-1

    Article  CAS  Google Scholar 

  52. Mangisetti SR, Kamaraj M, Ramaprabhu S (2019) N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors. Electrochim Acta 305:264–277. https://doi.org/10.1016/j.electacta.2019.03.043

  53. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875

    CAS  Google Scholar 

  54. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51(62):12365–12368. https://doi.org/10.1039/C5CC03981A

    Article  CAS  Google Scholar 

  55. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  56. Ozoemena KI, Chen S (2016) Nanomaterials in advanced batteries and supercapacitors. Springer

    Book  Google Scholar 

  57. Poudel MB, Shin M, Kim HJ (2021) Polyaniline-silver-manganese dioxide nanorod ternary composite for asymmetric supercapacitor with remarkable electrochemical performance. Int J Hydrogen Energy 46(1):474–485. https://doi.org/10.1016/j.ijhydene.2020.09.213

    Article  CAS  Google Scholar 

  58. Raj BGS, Acharya J, Seo M-K, Khil M-S, Kim H-Y, Kim B-S (2019) One-pot sonochemical synthesis of hierarchical MnWO4 microflowers as effective electrodes in neutral electrolyte for high performance asymmetric supercapacitors. Int J Hydrogen Energy 44(21):10838–10851. https://doi.org/10.1016/j.ijhydene.2019.03.035

    Article  CAS  Google Scholar 

  59. Rajkumar S, Christy Ezhilarasi J, Saranya P, Princy Merlin J (2022) Fabrication of CoWO4/PANI composite as electrode material for energy storage applications. J Phys Chem Solids 162:110500. https://doi.org/10.1016/j.jpcs.2021.110500

    Article  CAS  Google Scholar 

  60. Ramadan A, Anas M, Ebrahim S, Soliman M, Abou-Aly A (2020a) Effect of co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J Mater Sci Mater Electron 31(9):7247–7259. https://doi.org/10.1007/s10854-020-03297-8

    Article  CAS  Google Scholar 

  61. Ramadan A, Anas M, Ebrahim S, Soliman M, Abou-Aly AI (2020b) Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.04.093

    Article  Google Scholar 

  62. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49(24):4059–4062

    Article  Google Scholar 

  63. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  64. Sharma V, Sahoo A, Sharma Y, Mohanty P (2015) Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications. RSC Adv 5(57):45749–45754. https://doi.org/10.1039/C5RA03016A

    Article  CAS  Google Scholar 

  65. Sk MM, Yue CY (2014) Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors. J Mater Chem A 2(8):2830–2838. https://doi.org/10.1039/c3ta14309k

    Article  CAS  Google Scholar 

  66. Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140. https://doi.org/10.1016/j.jpowsour.2016.01.056

    Article  CAS  Google Scholar 

  67. Sumboja A, Wang X, Yan J, Lee PS (2012) Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochim Acta 65:190–195. https://doi.org/10.1016/j.electacta.2012.01.046

    Article  CAS  Google Scholar 

  68. Tabrizi AG, Arsalani N, Mohammadi A, Ghadimi LS, Ahadzadeh I, Namazi H (2018) A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390. https://doi.org/10.1016/j.electacta.2018.01.166

    Article  CAS  Google Scholar 

  69. Tan YB, Lee J-M (2013) Graphene for supercapacitor applications. J Mater Chem A 1(47):14814–14843. https://doi.org/10.1039/C3TA12193C

    Article  CAS  Google Scholar 

  70. Usman M, Pan L, Asif M, Mahmood Z (2015) Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. J Mater Res 30(21):3192–3200. https://doi.org/10.1557/jmr.2015.271

    Article  CAS  Google Scholar 

  71. Wang J-G, Yang Y, Huang Z-H, Kang F (2013a) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61:190–199. https://doi.org/10.1016/j.carbon.2013.04.084

    Article  CAS  Google Scholar 

  72. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114(17):8062–8067. https://doi.org/10.1021/jp9113255

    Article  CAS  Google Scholar 

  73. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013b) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568. https://doi.org/10.1038/srep03568

    Article  Google Scholar 

  74. Wang X, Deng J, Duan X, Liu D, Guo J, Liu P (2014) Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J Mater Chem A 2(31):12323–12329. https://doi.org/10.1039/C4TA02231A

    Article  CAS  Google Scholar 

  75. Wang X, Wu D, Song X, Du W, Zhao X, Zhang D (2019) Review on carbon/polyaniline hybrids: design and synthesis for supercapacitor. Molecules 24(12). https://doi.org/10.3390/molecules24122263

  76. Wang Z, Qe Z, Long S, Luo Y, Yu P, Tan Z, Bai J, Qu B, Yang Y, Shi J, Zhou H, Xiao Z-Y, Hong W, Bai H (2018) Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Interfaces 10(12):10437–10444. https://doi.org/10.1021/acsami.7b19635

    Article  CAS  Google Scholar 

  77. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721. https://doi.org/10.1039/C0CS00127A

    Article  CAS  Google Scholar 

  78. Wu X, Wu G, Tan P, Cheng H, Hong R, Wang F, Chen S (2018) Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. J Mater Chem A 6(19):8940–8946. https://doi.org/10.1039/C7TA11135E

    Article  CAS  Google Scholar 

  79. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10):5835–5842. https://doi.org/10.1021/nn101754k

    Article  CAS  Google Scholar 

  80. Xia C, Xie Y, Wang W, Du H (2014) Fabrication and electrochemical capacitance of polyaniline/titanium nitride core–shell nanowire arrays. Synth Met 192:93–100. https://doi.org/10.1016/j.synthmet.2014.03.018

    Article  CAS  Google Scholar 

  81. Yan Y, Cheng Q, Wang G, Li C (2011) Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources 196(18):7835–7840. https://doi.org/10.1016/j.jpowsour.2011.03.088

    Article  CAS  Google Scholar 

  82. Yan Y, Li B, Guo W, Pang H, Xue H (2016) Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 329:148–169. https://doi.org/10.1016/j.jpowsour.2016.08.039

    Article  CAS  Google Scholar 

  83. Yang G, Takei T, Yanagida S, Kumada N (2019) Hexagonal tungsten oxide-polyaniline hybrid electrodes for high-performance energy storage. Appl Surf Sci 498:143872. https://doi.org/10.1016/j.apsusc.2019.143872

    Article  CAS  Google Scholar 

  84. Yanilmaz M, Dirican M, Asiri AM, Zhang X (2019) Flexible polyaniline-carbon nanofiber supercapacitor electrodes. J Energy Storage 24:100766. https://doi.org/10.1016/j.est.2019.100766

    Article  Google Scholar 

  85. Ye Y-J, Huang Z-H, Song Y, Geng J-W, Xu X-X, Liu X-X (2017) Electrochemical growth of polyaniline nanowire arrays on graphene sheets in partially exfoliated graphite foil for high-performance supercapacitive materials. Electrochim Acta 240:72–79. https://doi.org/10.1016/j.electacta.2017.04.025

    Article  CAS  Google Scholar 

  86. Yu A, Chabot V, Zhang J (2013a) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. CRC Press

    Google Scholar 

  87. Yu L, Zhang G, Yuan C, Lou XW (2013b) Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49(2):137–139. https://doi.org/10.1039/C2CC37117K

    Article  CAS  Google Scholar 

  88. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6(20):1601111. https://doi.org/10.1002/aenm.201601111

    Article  CAS  Google Scholar 

  89. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850. https://doi.org/10.1002/adma.201100984

    Article  CAS  Google Scholar 

  90. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun 10(7):1056–1059. https://doi.org/10.1016/j.elecom.2008.05.007

    Article  CAS  Google Scholar 

  91. Zhang J, Jiang J, Li H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4(10):4009–4015. https://doi.org/10.1039/C1EE01354H

    Article  CAS  Google Scholar 

  92. Zhang X, Ma L, Gan M, Fu G, Jin M, Zhai Y (2018) Controllable constructing of hollow MoS2/PANI core/shell microsphere for energy storage. Appl Surf Sci 460:48–57. https://doi.org/10.1016/j.apsusc.2017.10.010

    Article  CAS  Google Scholar 

  93. Zhang Y, Zhang JM, Hua Q, Zhao Y, Yin H, Yuan J, Dai Z, Zheng L, Tang J (2019) Synergistically reinforced capacitive performance from a hierarchically structured composite of polyaniline and cellulose-derived highly porous carbons. Mater Lett 244:62–65. https://doi.org/10.1016/j.matlet.2019.02.045

    Article  CAS  Google Scholar 

  94. Zhao C, Ang JM, Liu Z, Lu X (2017) Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem Eng J 330:462–469. https://doi.org/10.1016/j.cej.2017.07.129

    Article  CAS  Google Scholar 

  95. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Func Mater 21(12):2175–2196. https://doi.org/10.1002/adfm.201002477

    Article  CAS  Google Scholar 

  96. Zheng X, Yu H, Xing R, Ge X, Sun H, Li R, Zhang Q (2018) Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochim Acta 260:504–513. https://doi.org/10.1016/j.electacta.2017.12.100

    Article  CAS  Google Scholar 

  97. Zhou Y, Guo W, Li T (2019) A review on transition metal nitrides as electrode materials for supercapacitors. Ceram Int 45(17, Part A):21062–21076. https://doi.org/10.1016/j.ceramint.2019.07.151

  98. Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, Reneker DH, Fong H (2010) Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 51(11):2360–2367. https://doi.org/10.1016/j.polymer.2010.03.044

    Article  CAS  Google Scholar 

  99. Zou Y, Zhang Z, Zhong W, Yang W (2018) Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J Mater Chem A 6(19):9245–9256. https://doi.org/10.1039/C8TA01366G

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wegdan Ramadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, A., Ramadan, W. (2023). Carbon and Metal Doped Polyaniline (PANI) for Energy Storage. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_12

Download citation

Publish with us

Policies and ethics