Skip to main content
Log in

Effect of Co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sulfur and nitrogen co-doped graphene quantum dots (S,N:GQDs) were prepared by a hydrothermal method. A series of polyaniline/S,N:G QDs nanocomposites (PGQDx where x is the mass of S,N:GQDs and equal to 0, 10, 20, 30, and 40 mg) has been synthesized via chemical in situ polymerization process. The UV–vis and Fourier transform infrared (FTIR) spectra showed an extra-doping level in H2SO4-doped polyaniline (PANI) due to –COOH groups of GQDs. However, increasing of GQDs content enhanced the aggregation of GQDs and reduced the doping level. The surface morphologies of nanocomposites showed a mixed of nanofibers, granules, and flakes with highly porous structure and particle size varied from 50 to 70 nm. Electrochemical properties of PGQD nanocomposites cast onto nickel-foam substrate as a supercapacitor electrode were performed in 2 M KOH electrolyte using cyclic voltammetry, charge/discharge, and electrochemical impedance techniques. PGQD20 exhibited maximum specific capacitance of 2524 F/g at 2 A/g with an excellent cyclic stability of 100% after 1000 cycle at scan rate of 50 mV/s. GQDs with unique properties reduces the charge transfer resistances, and promotes the contact between polyaniline and electrolyte and the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Gómez, M.K. Ram, F. Alvi, P. Villalba, E. Stefanakos, A. Kumar, J. Power Sources 196, 4102 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.002

    Article  CAS  Google Scholar 

  2. J. Luo, W. Zhong, Y. Zou, C. Xiong, W. Yang, J. Power Sources 319, 73 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.004

    Article  CAS  Google Scholar 

  3. H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Energy Environ. Sci. 6, 1185 (2013). https://doi.org/10.1039/C2EE24203F

    Article  CAS  Google Scholar 

  4. S. Zhu, J. Zhang, C. Qiao et al., Chem. Commun. 47, 6858 (2011). https://doi.org/10.1039/C1CC11122A

    Article  CAS  Google Scholar 

  5. X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Adv. Funct. Mater. 25, 4929 (2015). https://doi.org/10.1002/adfm.201501250

    Article  CAS  Google Scholar 

  6. L. Chen, C.X. Guo, Q. Zhang et al., ACS Appl. Mater. Interfaces. 5, 2047 (2013). https://doi.org/10.1021/am302938a

    Article  CAS  Google Scholar 

  7. Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, New J. Chem. 36, 861 (2012). https://doi.org/10.1039/C2NJ20942J

    Article  CAS  Google Scholar 

  8. J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 48, 3686 (2012). https://doi.org/10.1039/C2CC00110A

    Article  CAS  Google Scholar 

  9. S.L. Ting, S.J. Ee, A. Ananthanarayanan, K.C. Leong, P. Chen, Electrochim. Acta 172, 7 (2015). https://doi.org/10.1016/j.electacta.2015.01.026

    Article  CAS  Google Scholar 

  10. Y. Yan, J. Gong, J. Chen et al., Adv. Mater. 31, 1808283 (2019). https://doi.org/10.1002/adma.201808283

    Article  CAS  Google Scholar 

  11. T. Fan, G. Zhang, L. Jian et al., J. Alloy. Compd. 792, 844 (2019). https://doi.org/10.1016/j.jallcom.2019.04.097

    Article  CAS  Google Scholar 

  12. H. Xie, C. Hou, H. Wang, Q. Zhang, Y. Li, Nanoscale Res. Lett. 12, 400 (2017). https://doi.org/10.1186/s11671-017-2101-1

    Article  CAS  Google Scholar 

  13. Z. Ouyang, Y. Lei, Y. Chen et al., Nanoscale Res. Lett. 14, 219 (2019). https://doi.org/10.1186/s11671-019-3045-4

    Article  CAS  Google Scholar 

  14. S. Mondal, U. Rana, S. Malik, Chem. Commun. 51, 12365 (2015). https://doi.org/10.1039/C5CC03981A

    Article  CAS  Google Scholar 

  15. M. Dinari, M.M. Momeni, M. Goudarzirad, Surf. Eng. 32, 535 (2016). https://doi.org/10.1080/02670844.2015.1108047

    Article  CAS  Google Scholar 

  16. D. Qu, M. Zheng, P. Du et al., Nanoscale 5, 12272 (2013). https://doi.org/10.1039/C3NR04402E

    Article  CAS  Google Scholar 

  17. H. Bigdeli, M. Moradi, S. Borhani, E.A. Jafari, S. Hajati, M.A. Kiani, Physica E 100, 45 (2018). https://doi.org/10.1016/j.physe.2018.03.003

    Article  CAS  Google Scholar 

  18. M.B. Tayel, M.M. Soliman, S. Ebrahim, M.E. Harb, Synth. Met. 217, 237 (2016). https://doi.org/10.1016/j.synthmet.2016.04.011

    Article  CAS  Google Scholar 

  19. M. Rahimi-Nasrabadi, V. Pourmohamadian, M.S. Karimi et al., J. Mater. Sci. Mater. Electron. 28, 12391 (2017). https://doi.org/10.1007/s10854-017-7059-3

    Article  CAS  Google Scholar 

  20. J. Zhang, J. Jiang, H. Li, X.S. Zhao, Energy Environ. Sci. 4, 4009 (2011). https://doi.org/10.1039/C1EE01354H

    Article  CAS  Google Scholar 

  21. M. Zhang, W. Liu, R. Liang, R. Tjandra, A. Yu, Sustain Energy Fuels 3, 2499 (2019). https://doi.org/10.1039/C9SE00341J

    Article  CAS  Google Scholar 

  22. D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 22, 734 (2010). https://doi.org/10.1002/adma.200902825

    Article  CAS  Google Scholar 

  23. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Nanoscale 5, 4015 (2013). https://doi.org/10.1039/C3NR33849E

    Article  CAS  Google Scholar 

  24. Y. Dong, J. Shao, C. Chen et al., Carbon 50, 4738 (2012). https://doi.org/10.1016/j.carbon.2012.06.002

    Article  CAS  Google Scholar 

  25. Z. Zhang, Z. Wei, M. Wan, Macromolecules 35, 5937 (2002). https://doi.org/10.1021/ma020199v

    Article  CAS  Google Scholar 

  26. X. Lu, H. Dou, S. Yang et al., Electrochim. Acta 56, 9224 (2011). https://doi.org/10.1016/j.electacta.2011.07.142

    Article  CAS  Google Scholar 

  27. M.S. Cho, S.Y. Park, J.Y. Hwang, H.J. Choi, Mater. Sci. Eng. C 24, 15 (2004). https://doi.org/10.1016/j.msec.2003.09.003

    Article  CAS  Google Scholar 

  28. F.G. de Souza, B.G. Soares, Polym. Testing 25, 512 (2006). https://doi.org/10.1016/j.polymertesting.2006.01.014

    Article  CAS  Google Scholar 

  29. T. Abdiryim, R. Jamal, I. Nurulla, Appl. Polymer 105, 576 (2007). https://doi.org/10.1002/app.26070

    Article  CAS  Google Scholar 

  30. C. Xia, X. Hai, X.-W. Chen, J.-H. Wang, Talanta 168, 269 (2017). https://doi.org/10.1016/j.talanta.2017.03.040

    Article  CAS  Google Scholar 

  31. E. Shaker Mabrouk, S. Moataz Mohmed, E.-L. Mona Mahmound Abd, High Perform. Polym. 22, 377 (2009). https://doi.org/10.1177/0954008309103796

    Article  CAS  Google Scholar 

  32. N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit, A.K. Nandi, J. Mater. Chem. A 3, 20736 (2015). https://doi.org/10.1039/C5TA06576C

    Article  CAS  Google Scholar 

  33. S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Phys. Rev. B 50, 12496 (1994). https://doi.org/10.1103/PhysRevB.50.12496

    Article  CAS  Google Scholar 

  34. X. Du, Y. Xu, L. Xiong, Y. Bai, J. Zhu, S. Mao, Appl. Polymers. (2014). https://doi.org/10.1002/app.40827

    Article  Google Scholar 

  35. S. Gurunathan, J. Woong Han, E. Kim, D.-N. Kwon, J.-K. Park, J.-H. Kim, J. Nanobiotechnol. 12, 41 (2014). https://doi.org/10.1186/s12951-014-0041-9

    Article  CAS  Google Scholar 

  36. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Sensors Actuators B Chem. 229, 239 (2016). https://doi.org/10.1016/j.snb.2016.01.086

    Article  CAS  Google Scholar 

  37. Y. Li, Y. Zhao, H. Cheng et al., J. Am. Chem. Soc. 134, 15 (2012). https://doi.org/10.1021/ja206030c

    Article  CAS  Google Scholar 

  38. Q. Wang, Y. Wang, Q. Meng et al., RSC Adv. 7, 2796 (2017). https://doi.org/10.1039/C6RA26458A

    Article  CAS  Google Scholar 

  39. Z. Zhao, Y. Xie, J. Power Sources 337, 54 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.110

    Article  CAS  Google Scholar 

  40. L. Ding, Q. Li, D. Zhou, H. Cui, H. An, J. Zhai, J. Electroanal. Chem. 668, 44 (2012). https://doi.org/10.1016/j.jelechem.2011.12.018

    Article  CAS  Google Scholar 

  41. A.K. Samantara, S. Chandra Sahu, A. Ghosh, B.K. Jena, J. Mater. Chem. A 3, 16961 (2015). https://doi.org/10.1039/C5TA03376D

    Article  CAS  Google Scholar 

  42. H. Guan, L.-Z. Fan, H. Zhang, X. Qu, Electrochim. Acta 56, 964 (2010). https://doi.org/10.1016/j.electacta.2010.09.078

    Article  CAS  Google Scholar 

  43. S.B. Kulkarni, U.M. Patil, I. Shackery et al., J. Mater. Chem. A 2, 4989 (2014). https://doi.org/10.1039/C3TA14959E

    Article  CAS  Google Scholar 

  44. J. Huang, R.B. Kaner, Chem. Commun. (2006). https://doi.org/10.1039/B510956F

    Article  Google Scholar 

  45. K.S.W. Sing, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  46. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004). https://doi.org/10.1021/ja0371754

    Article  CAS  Google Scholar 

  47. A. Maitra, A.K. Das, R. Bera et al., ACS Appl. Mater. Interfaces. 9, 5947 (2017). https://doi.org/10.1021/acsami.6b13259

    Article  CAS  Google Scholar 

  48. Q. Cheng, K. Tao, X. Han et al., Dalton Trans. 48, 4119 (2019). https://doi.org/10.1039/c9dt00386j

    Article  CAS  Google Scholar 

  49. J. Jin, Y. Zhou, Z. Xiong et al., Int. J. Hydrogen Energy 43, 8426 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.133

    Article  CAS  Google Scholar 

  50. F.S. Omar, A. Numan, N. Duraisamy, M.M. Ramly, K. Ramesh, S. Ramesh, Electrochim. Acta 227, 41 (2017). https://doi.org/10.1016/j.electacta.2017.01.006

    Article  CAS  Google Scholar 

  51. B. Sun, X. He, X. Leng et al., RSC Adv. 6, 43959 (2016). https://doi.org/10.1039/C6RA02534J

    Article  CAS  Google Scholar 

  52. G. Qiu, A. Zhu, C. Zhang, RSC Adv. 7, 35330 (2017). https://doi.org/10.1039/C7RA05235A

    Article  CAS  Google Scholar 

  53. C. Li, J. Balamurugan, N.H. Kim, J.H. Lee, Adv. Energy Mater. 8, 1702014 (2018). https://doi.org/10.1002/aenm.201702014

    Article  CAS  Google Scholar 

  54. H.B. Li, M.H. Yu, F.X. Wang et al., Nat. Commun. 4, 1894 (2013). https://doi.org/10.1038/ncomms2932

    Article  CAS  Google Scholar 

  55. M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci. Mater. Electron. 28, 1877 (2017). https://doi.org/10.1007/s10854-016-5739-z

    Article  CAS  Google Scholar 

  56. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017). https://doi.org/10.1016/j.apsusc.2017.06.239

    Article  CAS  Google Scholar 

  57. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, J. Mater. Sci. Mater. Electron. 28, 8588 (2017). https://doi.org/10.1007/s10854-017-6582-6

    Article  CAS  Google Scholar 

  58. A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi et al., Ultrason. Sonochem. 45, 189 (2018). https://doi.org/10.1016/j.ultsonch.2018.03.011

    Article  CAS  Google Scholar 

  59. H. Gao, F. Wu, X. Wang, C. Hao, C. Ge, Int. J. Hydrogen Energy 43, 18349 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.018

    Article  CAS  Google Scholar 

  60. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani et al., J. Mater. Sci. Mater. Electron. 27, 4541 (2016). https://doi.org/10.1007/s10854-016-4329-4

    Article  CAS  Google Scholar 

  61. Q. Wang, H. Wang, D. Liu, P. Du, P. Liu, Synth. Met. 231, 120 (2017). https://doi.org/10.1016/j.synthmet.2017.06.018

    Article  CAS  Google Scholar 

  62. G. Oskueyan, M.M. Lakouraj, M. Mahyari, Electrochim. Acta 299, 125 (2019). https://doi.org/10.1016/j.electacta.2018.12.179

    Article  CAS  Google Scholar 

  63. M. Usman, L. Pan, M. Asif, Z. Mahmood, J. Mater. Res. 30, 3192 (2015). https://doi.org/10.1557/jmr.2015.271

    Article  CAS  Google Scholar 

  64. M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, J. Power Sources 308, 121 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.056

    Article  CAS  Google Scholar 

  65. Y. Ma, W. Yuan, Y. Bai, H. Wu, L. Cheng, Carbon 154, 292 (2019). https://doi.org/10.1016/j.carbon.2019.07.095

    Article  CAS  Google Scholar 

  66. G. Wei, X. Zhao, K. Du et al., Chem. Eng. J. 326, 58 (2017). https://doi.org/10.1016/j.cej.2017.05.127

    Article  CAS  Google Scholar 

  67. Y. Huang, L. Lin, T. Shi et al., Appl. Surf. Sci. 463, 498 (2019). https://doi.org/10.1016/j.apsusc.2018.08.247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Ramadan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, A., Anas, M., Ebrahim, S. et al. Effect of Co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J Mater Sci: Mater Electron 31, 7247–7259 (2020). https://doi.org/10.1007/s10854-020-03297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03297-8

Navigation