Skip to main content

Research on Tablet Crack Detection Algorithm Based on Improved YOLOv5

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 873))

Abstract

Tablet crack detection is an important part to ensure drug quality in the process of drug production. In view of the problems of target detection algorithm in the actual tablet crack detection, such as few training samples and the embedded device based on ARM architecture is difficult to accommodate the algorithm when the system is implemented, this paper proposes a tablet crack detection algorithm based on improved YOLOv5. The collected data set is processed by data enhancement, and YOLOv5 algorithm is improved by using fusion involution and varifocal loss to detect tablet cracks. The improved tablet crack detection algorithm improves the accuracy and speed of model detection. In the detection system designed with Raspberry Pi as the core, the crack detection mAP50 is 99.5%, and the reasoning speed is reduced from 797 ms to 299 ms. After the model is converted and simplified, the reasoning speed is reduced to 86 ms, which meets the design requirements of the crack detection system based on ARM architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui, Y., Liu, Z., Lian, S.: A survey on unsupervised industrial anomaly detection algorithms (2022). arXiv preprint arXiv:2204.11161

  2. Wang, H., Liu, X., Chen, Y.: Detection of capsule foreign matter defect based on BP neural network. In: 2014 IEEE International Conference on Granular Computing (GrC), pp. 325–328. IEEE (2014)

    Google Scholar 

  3. Yueqiu, J., Shuang, M., Hongwei, G., Fei, X.: Research on defect detection technology of tablets in aluminum plastic package. Open Autom. Control Syst. J. 6(1), 940–951 (2014)

    Article  Google Scholar 

  4. Puneeth, K.S., Sahay, A., Shreya, G.H., et al.: Designing an affordable system for early defect detection using image processing. Adv. Transdisciplinary Eng. 9, 121–128 (2019)

    Google Scholar 

  5. Ma, X., et al.: Deep learning convolutional neural networks for pharmaceutical tablet defect detection. Microscopy and Microanalysis, 26(S2) (2020)

    Google Scholar 

  6. Yang, J., Wang, Y., Wang, Z., et al.: Using stochastic gradient descent and deep learning to defect detection for medicinal hollow capsule. In: 2021 China Automation Congress (CAC), pp. 4926–4933. IEEE (2021)

    Google Scholar 

  7. Redmon, J.,Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–10. Las Vegas (2016)

    Google Scholar 

  8. Redmon, J.,Farhadi, A.: YOLO9000: better, faster, stronger. IEEE Conference on Computer Vision and Pattern Recognition, 1–9 (2017)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLOv3: anincremental improvement (2018). arXiv:1804.02767

  10. Bochkovskiy, A.,Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  11. Zhang, R.: Making convolutional networks shiftinvariant again. In: ICML (2019)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  13. Li, D.,et al.: Involution: inverting the inherence of convolution for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12321–12330 (2021)

    Google Scholar 

  14. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  15. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.:.VarifocalNet: an IoU-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8514–8523 (2021)

    Google Scholar 

Download references

Acknowledgment

The special fund for innovation and Entrepreneurship of Postgraduates of Inner Mongolia University (11200–121024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Zhang, X., Li, X., Shi, Q., Wang, S. (2023). Research on Tablet Crack Detection Algorithm Based on Improved YOLOv5. In: Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2022. Lecture Notes in Electrical Engineering, vol 873. Springer, Singapore. https://doi.org/10.1007/978-981-99-1260-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1260-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1259-9

  • Online ISBN: 978-981-99-1260-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics