Skip to main content

Pulsed Discharges for Water Activation and Plasma-Activated Water Production

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

  • 772 Accesses

Abstract

Discharge plasma interacting with water or aqueous media uniquely loads and delivers external energy and reactive gaseous species to activate water and thus harvests a product, normally termed plasma-activated water/media (PAW/PAM). PAW, with broad-spectrum biochemical activities due to the rich assortment of reactive oxygen and nitrogen species (RONS), holds a promising potential for a range of applications in fields ranging from biomedicine to agriculture. In order to effectively generate and control reactive chemical species in PAW, various power source technologies, reactor and process designs, and many other innovations have been developed to further improve existing PAW production and applications. This chapter presents the current state-of-the-art of using pulsed discharges for the regulation and enhancement of reactive species generated in PAW, and recent advances in understanding the formation pathways, and physiochemical processes of plasma species during plasma-liquid activation, followed by brief discussions of PAW actions in typical applications, including microbial and virus inactivation, cancer treatment, seed germination and plant growth, dentistry and wound healing. Overall, this chapter will provide insights into the efficient production of reactive species in PAW to meet the requirements of different PAW-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Aboubakr, U. Gangal, M.M. Youssef, S.M. Goyal, P.J. Bruggeman, Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways. J. Phys. D Appl. Phys. 49(20), 204001 (2016)

    Article  ADS  Google Scholar 

  2. H.A. Aboubakr, S.K. Mor, L. Higgins, A. Armien, M.M. Youssef, P.J. Bruggeman, S.M. Goyal, Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus. PLoS ONE 13(3), e0194618 (2018)

    Article  Google Scholar 

  3. T. Adachi, H. Tanaka, S. Nonomura, H. Hara, S.-I. Kondo, M. Hori, Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial–nuclear network. Free Radical Biol. Med. 79, 28–44 (2015)

    Article  Google Scholar 

  4. A. Alboresi, C. Gestin, M.T. Leydecker, M. Bedu, C. Meyer, H.N. Truong, Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell Environ. 28(4), 500–512 (2005)

    Article  Google Scholar 

  5. J.Y. An, H.I. Yong, H.-J. Kim, J.Y. Park, S.H. Lee, K.H. Baek, C. Jo, Estimation of inactivation effects against Escherichia coli O157: H7 biofilm by different plasma-treated solutions and post-treatment storage. Appl. Phys. Lett. 114(7), 073703 (2019)

    Article  ADS  Google Scholar 

  6. J.S. Beckman, W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. Cell Physiol. 271(5), C1424–C1437 (1996)

    Article  Google Scholar 

  7. N. Bolouki, W.-H. Kuan, Y.-Y. Huang, J.-H. Hsieh, Characterizations of a plasma-water system generated by repetitive microsecond pulsed discharge with air, nitrogen, oxygen, and argon gases species. Appl. Sci. 11(13), 6158 (2021)

    Article  Google Scholar 

  8. C. Breen, R. Pal, M.R. Elsegood, S.J. Teat, F. Iza, K. Wende, S.J. Butler, Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem. Sci. 11(12), 3164–3170 (2020)

    Article  Google Scholar 

  9. P. Bruggeman, M.J. Kushner, B.R. Locke, J.G. Gardeniers, W. Graham, D.B. Graves, E. Ceriani, Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci. Technol. 25(5), 053002 (2016)

    Article  ADS  Google Scholar 

  10. Y. Cai, Y. Luo, B.-C. Sun, T.-X. Fan, G.-W. Chu, J.-F. Chen, A novel plasma-assisted rotating disk reactor: Enhancement of degradation efficiency of rhodamine B. Chem. Eng. J. 377, 119897 (2019)

    Article  Google Scholar 

  11. J. Čech, P. Sťahel, J. Ráheľ, L. Prokeš, P. Rudolf, E. Maršálková, B. Maršálek, Mass production of plasma activated water: case studies of its biocidal effect on algae and cyanobacteria. Water 12(11), 3167 (2020)

    Article  Google Scholar 

  12. G. Chen, Z. Chen, Z. Wang, R. Obenchain, D. Wen, H. Li, . Z. Gu, Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Science advances, 7(36), eabg5686 (2021)

    Google Scholar 

  13. Z. Chen, D. Liu, C. Chen, D. Xu, Z. Liu, W. Xia, M.G. Kong, Analysis of the production mechanism of H2O2 in water treated by helium DC plasma jets. J. Phys. D Appl. Phys. 51(32), 325201 (2018)

    Article  ADS  Google Scholar 

  14. Y.C. Cheng, C.H. Wu, C.T. Liu, C.Y. Lin, H.P. Chiang, T.W. Chen, J.S. Wu, Tooth bleaching by using a helium-based low-temperature atmospheric pressure plasma jet with saline solution. Plasma Processes Polym. 14(11), 1600235 (2017)

    Article  Google Scholar 

  15. T.L. Chng, A. Brisset, P. Jeanney, S. Starikovskaia, I. Adamovich, P. Tardiveau, Electric field evolution in a diffuse ionization wave nanosecond pulse discharge in atmospheric pressure air. Plasma sources science and technology, 28(9), 09LT02 (2019)

    Google Scholar 

  16. U. Cvelbar, J.L. Walsh, M. Černák, H.W. de Vries, S. Reuter, T. Belmonte, A. Jurov, White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes Polym. 16(1), 1700228 (2019)

    Article  Google Scholar 

  17. M.J. Davies, Protein oxidation and peroxidation. Biochem. J. 473(7), 805–825 (2016)

    Article  Google Scholar 

  18. M. Fransen, M. Nordgren, B. Wang, O. Apanasets, Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(9), 1363–1373 (2012)

    Google Scholar 

  19. P. Galář, J. Khun, A. Fučíková, K. Dohnalová, T. Popelář, I. Matulková, K. Kůsová, Non-thermal pulsed plasma activated water: environmentally friendly way for efficient surface modification of semiconductor nanoparticles. Green Chem. 23(2), 898–911 (2021)

    Article  Google Scholar 

  20. F. Girard, M. Peret, N. Dumont, V. Badets, S. Blanc, K. Gazeli, J.-P. Cambus, Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Phys. Chem. Chem. Phys. 20(14), 9198–9210 (2018)

    Article  Google Scholar 

  21. E. Gjika, S. Pal-Ghosh, A. Tang, M. Kirschner, G. Tadvalkar, J. Canady, M. Keidar, Adaptation of operational parameters of cold atmospheric plasma for in vitro treatment of cancer cells. ACS Appl. Mater. Interfaces. 10(11), 9269–9279 (2018)

    Article  Google Scholar 

  22. I. Gulko, E. Jans, C. Richards, S. Raskar, X. Yang, D. van den Bekerom, I. Adamovich, Selective generation of excited species in ns pulse/RF hybrid plasmas for plasma chemistry applications. Plasma Sources Sci. Technol. 29(10), 104002 (2020)

    Article  ADS  Google Scholar 

  23. L. Guo, R. Xu, L. Gou, Z. Liu, Y. Zhao, D. Liu, M.G. Kong, Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Appl. Environ. Microbiol. 84(17), e00726-e1718 (2018)

    Article  Google Scholar 

  24. L. Guo, Z. Yao, L. Yang, H. Zhang, Y. Qi, L. Gou, Y. Cheng, Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem. Eng. J. 421, 127742 (2021)

    Article  Google Scholar 

  25. K. Hadinoto, J.B. Astorga, H. Masood, R. Zhou, D. Alam, P.J. Cullen, F.J. Trujillo, Efficacy optimization of plasma-activated water for food sanitization through two reactor design configurations. Innov. Food Sci. Emerg. Technol. 74, 102867 (2021)

    Article  Google Scholar 

  26. X. He, J. Lin, B. He, L. Xu, J. Li, Q. Chen, Q.H. Liu, The formation pathways of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the cathode. Plasma Sources Sci. Technol. 27(8), 085010 (2018). https://doi.org/10.1088/1361-6595/aad66d

    Article  ADS  Google Scholar 

  27. J. Hong, T. Zhang, R. Zhou, R. Zhou, K.K. Ostikov, A. Rezaeimotlagh, P.J. Cullen, Plasma bubbles: a route to sustainable chemistry. AAPPS Bull. 31(1), 1–14 (2021)

    Article  Google Scholar 

  28. X. Hu, Y. Zhang, R.A. Wu, X. Liao, D. Liu, P.J. Cullen, T. Ding, Diagnostic analysis of reactive species in plasma-activated water (PAW): current advances and outlooks. J. Phys. D Appl. Phys. 55(2), 023002 (2021)

    Article  ADS  Google Scholar 

  29. Y. Ikehara, H. Sakakita, N. Shimizu, S. Ikehara, H. Nakanishi, Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J. Photopolym. Sci. Technol. 26(4), 555–557 (2013)

    Article  Google Scholar 

  30. M. Janda, K. Hensel, P. Tóth, M.E. Hassan, Z. Machala, The Role of HNO2 in the Generation of Plasma-Activated Water by Air Transient Spark Discharge. Appl. Sci. 11(15), 7053 (2021)

    Article  Google Scholar 

  31. I. Janik, G. Tripathi, The nature of the superoxide radical anion in water. J. Chem. Phys. 139(1), 014302 (2013)

    Article  ADS  Google Scholar 

  32. N. Jiang, L. Guo, C. Qiu, Y. Zhang, K. Shang, N. Lu, Y. Wu, Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes. Chem. Eng. J. 350, 12–19 (2018)

    Article  Google Scholar 

  33. Y.S. Jin, C. Cho, D. Kim, C.H. Sohn, C.-S. Ha, S.-T. Han, Mass production of plasma activated water by an atmospheric pressure plasma. Japanese Journal of Applied Physics, 59(SH), SHHF05. (2020)

    Google Scholar 

  34. F. Judée, S. Simon, C. Bailly, T. Dufour, Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 133, 47–59 (2018)

    Article  Google Scholar 

  35. N.K. Kaushik, B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, K. Masur, Biological and medical applications of plasma-activated media, water and solutions. Biol. Chem. 400(1), 39–62 (2019)

    Article  Google Scholar 

  36. A. Krapp, L.C. David, C. Chardin, T. Girin, A. Marmagne, A.-S. Leprince, F. Daniel-Vedele, Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 65(3), 789–798 (2014)

    Article  Google Scholar 

  37. N. Kurake, H. Tanaka, K. Ishikawa, T. Kondo, M. Sekine, K. Nakamura, M. Hori, Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102–108 (2016)

    Article  Google Scholar 

  38. Y. Li, J. Pan, G. Ye, Q. Zhang, J. Wang, J. Zhang, J. Fang, In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125(6), 463–470 (2017)

    Article  Google Scholar 

  39. B.A. Lindig, M.A. Rodgers, A.P. Schaap, Determination of the lifetime of singlet oxygen in water-d2 using 9, 10-anthracenedipropionic acid, a water-soluble probe. J. Am. Chem. Soc. 102(17), 5590–5593 (1980)

    Article  Google Scholar 

  40. A. Lindsay, B. Byrns, W. King, A. Andhvarapou, J. Fields, D. Knappe, S. Shannon, Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge. Plasma Chem. Plasma Process. 34(6), 1271–1290 (2014)

    Article  Google Scholar 

  41. K. Liu, W. Ren, C. Ran, R. Zhou, W. Tang, R. Zhou, K.K. Ostrikov, Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions. J. Phys. D Appl. Phys. 54(6), 065201 (2020)

    Article  ADS  Google Scholar 

  42. Y. Liu, H. Zhang, J. Sun, J. Liu, X. Shen, J. Zhan, P. Li, Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles. Chem. Eng. J. 345, 679–687 (2018)

    Article  Google Scholar 

  43. Z. Liu, D. Xu, C. Zhou, Q. Cui, T. He, Z. Chen, M.G. Kong, Effects of the pulse polarity on helium plasma jets: Discharge characteristics, key reactive species, and inactivation of myeloma cell. Plasma Chem. Plasma Process. 38(5), 953–968 (2018)

    Article  Google Scholar 

  44. B.R. Locke, K.-Y. Shih, Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 20(3), 034006 (2011)

    Article  ADS  Google Scholar 

  45. A. Los, D. Ziuzina, D. Boehm, P.J. Cullen, P. Bourke, Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavus spores and biofilms: A comparative study. Appl. Environ. Microbiol. 86(9), e02619-02619 (2020)

    Article  ADS  Google Scholar 

  46. P. Lu, D. Boehm, P. Bourke, P.J. Cullen, Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes Polym. 14(8), 1600207 (2017)

    Article  Google Scholar 

  47. R. Ma, G. Wang, Y. Tian, K. Wang, J. Zhang, J. Fang, Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 300, 643–651 (2015)

    Article  Google Scholar 

  48. Z. Machala, B. Tarabová, D. Sersenová, M. Janda, K. Hensel, Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 52(3), 034002 (2018)

    Article  ADS  Google Scholar 

  49. A. Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6(1), 1–11 (2016)

    Article  Google Scholar 

  50. A. Mai-Prochnow, R. Zhou, T. Zhang, K.K. Ostrikov, S. Mugunthan, S.A. Rice, P.J. Cullen, Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes 7(1), 11 (2021). https://doi.org/10.1038/s41522-020-00180-6

    Article  Google Scholar 

  51. M.A. Malik, Water purification by plasmas: which reactors are most energy efficient? Plasma Chem. Plasma Process. 30(1), 21–31 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  52. A.J. Miller, X. Fan, M. Orsel, S.J. Smith, D.M. Wells, Nitrate transport and signalling. J. Exp. Bot. 58(9), 2297–2306 (2007)

    Article  Google Scholar 

  53. K. Miyamoto, S. Ikehara, H. Takei, Y. Akimoto, H. Sakakita, K. Ishikawa, J. Kim, Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 605, 95–101 (2016)

    Article  Google Scholar 

  54. P.E. Morgan, R.T. Dean, M.J. Davies, Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radical Biol. Med. 36(4), 484–496 (2004)

    Article  Google Scholar 

  55. K. Nakamura, Y. Peng, F. Utsumi, H. Tanaka, M. Mizuno, S. Toyokuni, H. Kajiyama, Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci. Rep. 7(1), 1–14 (2017)

    Article  ADS  Google Scholar 

  56. I. Naumova, A. Maksimov, A. Khlyustova, Stimulation of the germinability of seeds and germ growth under treatment with plasma-activated water. Surf. Eng. Appl. Electrochem. 47(3), 263–265 (2011)

    Article  Google Scholar 

  57. R. Niquet, D. Boehm, U. Schnabel, P. Cullen, P. Bourke, J. Ehlbeck, Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Processes Polym. 15(3), 1700127 (2018)

    Article  Google Scholar 

  58. J. Pandhal, A. Siswanto, D. Kuvshinov, W.B. Zimmerman, L. Lawton, C. Edwards, Cell lysis and detoxification of cyanotoxins using a novel combination of microbubble generation and plasma microreactor technology for ozonation. Front. Microbiol. 9, 678 (2018)

    Article  Google Scholar 

  59. D.P. Park, K. Davis, S. Gilani, C.-A. Alonzo, D. Dobrynin, G. Friedman, G. Fridman, Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr. Appl. Phys. 13, S19–S29 (2013)

    Article  Google Scholar 

  60. A. Pemen, P. Van Ooij, F. Beckers, W. Hoeben, A.M. Koonen-Reemst, T. Huiskamp, P. Leenders, Power modulator for high-yield production of plasma-activated water. IEEE Trans. Plasma Sci. 45(10), 2725–2733 (2017)

    Article  ADS  Google Scholar 

  61. S. Perinban, V. Orsat, V. Raghavan, Nonthermal plasma–liquid interactions in food processing: A review. Compr. Rev. Food Sci. Food Saf. 18(6), 1985–2008 (2019)

    Article  Google Scholar 

  62. P.E. Petersen, The World Oral Health Report 2003: continuous improvement of oral health in the 21st century–the approach of the WHO Global Oral Health Programme. Commun. Dent. Oral Epidemiol. 31, 3–24 (2003)

    Article  Google Scholar 

  63. I. Piskarev, I. Ivanova, Comparison of chemistry induced by direct and indirect plasma treatment of water to the effect of UV radiation. Plasma Chem. Plasma Process. 41(1), 447–475 (2021)

    Article  Google Scholar 

  64. D. Porter, M.D. Poplin, F. Holzer, W.C. Finney, B.R. Locke, Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray. IEEE Trans. Ind. Appl. 45(2), 623–629 (2009)

    Article  Google Scholar 

  65. N. Puač, N. Škoro, K. Spasić, S. Živković, M. Milutinović, G. Malović, Z.L. Petrović, Activity of catalase enzyme in Paulownia tomentosa seeds during the process of germination after treatments with low pressure plasma and plasma activated water. Plasma Processes Polym. 15(2), 1700082 (2018)

    Article  Google Scholar 

  66. E.C. Puertas, A. Dzafic, S. Coulombe, Investigation of the electrode erosion in pin-to-liquid discharges and its influence on reactive oxygen and nitrogen species in plasma-activated water. Plasma Chem. Plasma Process. 40(1), 145–167 (2020)

    Article  Google Scholar 

  67. J. Qian, H. Zhuang, M.M. Nasiru, U. Muhammad, J. Zhang, W. Yan, Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innov. Food Sci. Emerg. Technol. 57, 102196 (2019)

    Article  Google Scholar 

  68. F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, N. De Geyter, Applications of plasma-liquid systems: A review. Materials 12(17), 2751 (2019)

    Article  ADS  Google Scholar 

  69. J.G. Rothwell, D. Alam, D.A. Carter, B. Soltani, R. McConchie, R. Zhou, A. Mai‐Prochnow, The antimicrobial efficacy of plasma activated water against listeria and E. Coli is modulated by reactor design and water composition. J. Appl. Microbiol. (2021)

    Google Scholar 

  70. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, S. Starikovskaia, The 2012 plasma roadmap. J. Phys. D Appl. Phys. 45(25), 253001 (2012)

    Article  ADS  Google Scholar 

  71. T. Shao, R. Wang, C. Zhang, P. Yan, Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High voltage 3(1), 14–20 (2018)

    Article  Google Scholar 

  72. E. Skovsen, J.W. Snyder, J.D. Lambert, P.R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 109(18), 8570–8573 (2005)

    Article  Google Scholar 

  73. X. Su, Y. Tian, H. Zhou, Y. Li, Z. Zhang, B. Jiang, J. Fang, Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus. Appl. Environ. Microbiol. 84(9), e02836-e12817 (2018)

    Article  ADS  Google Scholar 

  74. J. Sun, D. Alam, R. Daiyan, H. Masood, T. Zhang, R. Zhou, R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy. Environ. Sci. 14(2), 865–872 (2021)

    Article  Google Scholar 

  75. K. Tachibana, T. Nakamura, Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J. Phys. D Appl. Phys. 52(38), 385202 (2019)

    Article  Google Scholar 

  76. H. Tanaka, M. Laroussi, S. Bekeschus, D. Yan, M. Hori, M. Keidar, Plasma-Activated solution in cancer treatment. In Plasma Cancer Therapy (pp. 143–168): Springer. (2020)

    Google Scholar 

  77. H. Tanaka, M. Mizuno, K. Ishikawa, H. Kondo, K. Takeda, H. Hashizume, H. Kano, Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 3(2), 72–76 (2015)

    Article  Google Scholar 

  78. H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, F. Utsumi, H. Kajiyama, M. Hori, Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2(4), (2012).

    Google Scholar 

  79. R. Thirumdas, A. Kothakota, U. Annapure, K. Siliveru, R. Blundell, R. Gatt, V.P. Valdramidis, Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 77, 21–31 (2018)

    Article  Google Scholar 

  80. Y. Tian, R. Ma, Q. Zhang, H. Feng, Y. Liang, J. Zhang, J. Fang, Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Processes Polym. 12(5), 439–449 (2015)

    Article  Google Scholar 

  81. J. Tornin, C. Labay, F. Tampieri, M.-P. Ginebra, C. Canal, Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat. Protoc. 16(6), 2826–2850 (2021)

    Article  Google Scholar 

  82. Tresp, H., Hammer, M. U., Weltmann, K.-D., & Reuter, S. (2013). Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions. Plasma Medicine, 3(1–2).

    Google Scholar 

  83. G. Uchida, A. Nakajima, T. Ito, K. Takenaka, T. Kawasaki, K. Koga, Y. Setsuhara, Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2− in liquid water. J. Appl. Phys. 120(20), 203302 (2016)

    Article  ADS  Google Scholar 

  84. M. Ueda, D. Yamagami, K. Watanabe, A. Mori, H. Kimura, K. Sano, H. Sakakita, Histological and nuclear medical comparison of inflammation after hemostasis with non-thermal plasma and thermal coagulation. Plasma Processes Polym. 12(12), 1338–1342 (2015)

    Article  Google Scholar 

  85. P. Wang, R. Zhou, P. Thomas, L. Zhao, R. Zhou, S. Mandal, K.K. Ostrikov, Epithelial-to-mesenchymal transition enhances cancer cell sensitivity to cytotoxic effects of cold atmospheric plasmas in breast and bladder cancer systems. Cancers 13(12), 2889 (2021)

    Article  Google Scholar 

  86. Q. Wang, A. Zhang, P. Li, P. Héroux, H. Zhang, X. Yu, Y. Liu, Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications. J. Hazard. Mater. 403, 124087 (2021)

    Article  Google Scholar 

  87. R. Wang, K. Guegler, S.T. LaBrie, N.M. Crawford, Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12(8), 1491–1509 (2000)

    Article  Google Scholar 

  88. S. Wang, Y. Liu, R. Zhou, F. Liu, Z. Fang, K. Ostrikov, P.J. Cullen, Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics. Plasma Processes Polym. 18(2), 2000135 (2021)

    Article  Google Scholar 

  89. S. Wang, D.Z. Yang, R. Zhou, R. Zhou, Z. Fang, W. Wang, K.K. Ostrikov, Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: effect of grounding configuration. Plasma Processes Polym. 17(3), 1900146 (2020)

    Article  Google Scholar 

  90. A. Wright, H. Bandulasena, C. Ibenegbu, D. Leak, T. Holmes, W. Zimmerman, F. Iza, Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AIChE J. 64(11), 3803–3816 (2018)

    Article  Google Scholar 

  91. M.-C. Wu, S. Uehara, J.-S. Wu, Y. Xiao, T. Nakajima, T. Sato, Dissolution enhancement of reactive chemical species by plasma-activated microbubbles jet in water. J. Phys. D Appl. Phys. 53(48), 485201 (2020)

    Article  ADS  Google Scholar 

  92. W. Xi, L. Guo, D. Liu, R. Zhou, Z. Wang, W. Wang, M. Rong, Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. J. Hazard. Mater. 424, 127658 (2022)

    Article  Google Scholar 

  93. W. Xia, D. Liu, L. Guo, W. Wang, H. Xu, C. Feng, M. Rong, Discharge characteristics and bactericidal mechanism of Ar plasma jet with ethanol and oxygen gas admixtures. Plasma Sources Sci. Technol. 28(12), 125005 (2019)

    Article  ADS  Google Scholar 

  94. Q. Xiang, X. Liu, S. Liu, Y. Ma, C. Xu, Y. Bai, Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov. Food Sci. Emerg. Technol. 52, 49–56 (2019)

    Article  Google Scholar 

  95. X. Xu, J.G. Muller, Y. Ye, C.J. Burrows, DNA− protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts. J. Am. Chem. Soc. 130(2), 703–709 (2008)

    Article  Google Scholar 

  96. L. Xue, Z. Renwu, B. Zhang, Z. Rusen, K. Ostrikov, F. Zhi, Design and characteristics investigation of a miniature low-temperature plasma spark discharge device. Plasma Sci. Technol 21(5), 054005 (2019)

    Article  ADS  Google Scholar 

  97. D. Yan, H. Cui, W. Zhu, N. Nourmohammadi, J. Milberg, L.G. Zhang, M. Keidar, The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 7(1), 1–12 (2017)

    Google Scholar 

  98. D. Yan, N. Nourmohammadi, K. Bian, F. Murad, J.H. Sherman, M. Keidar, Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Sci. Rep. 6(1), 1–11 (2016)

    Google Scholar 

  99. D. Yan, A. Talbot, N. Nourmohammadi, X. Cheng, J. Canady, J. Sherman, M. Keidar, Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci. Rep. 5(1), 1–17 (2015)

    Article  Google Scholar 

  100. D.-Z. Yang, Y. Yang, S.-Z. Li, D.-X. Nie, S. Zhang, W.-C. Wang, A homogeneous dielectric barrier discharge plasma excited by a bipolar nanosecond pulse in nitrogen and air. Plasma Sources Sci. Technol. 21(3), 035004 (2012)

    Article  ADS  Google Scholar 

  101. Y. Yang, Y.I. Cho, A. Fridman, Plasma discharge in liquid: water treatment and applications: CRC press. (2017)

    Google Scholar 

  102. Q. Zhang, R. Ma, Y. Tian, B. Su, K. Wang, S. Yu, J. Fang, Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50(6), 3184–3192 (2016)

    Article  ADS  Google Scholar 

  103. X. Zhang, R. Zhou, K. Bazaka, Y. Liu, R. Zhou, G. Chen, K. Ostrikov, Quantification of plasma produced OH radical density for water sterilization. Plasma Processes Polym. 15(6), 1700241 (2018)

    Article  Google Scholar 

  104. R. Zhou, Direct and indirect activation of biological objects using cold atmospheric plasma. Qld. Univ. Technol., (2019)

    Google Scholar 

  105. R. Zhou, J. Li, R. Zhou, X. Zhang, S. Yang, Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov. Food Sci. Emerg. Technol. 53, 36–44 (2019)

    Article  Google Scholar 

  106. R. Zhou, A. Rezaeimotlagh, R. Zhou, T. Zhang, P. Wang, J. Hong, T. Ding, In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci. & Technol. (2021)

    Google Scholar 

  107. R. Zhou, T. Zhang, R. Zhou, A. Mai-Prochnow, S.B. Ponraj, Z. Fang, D. Alam, Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. Sci. Total Environ. 750, 142295 (2021)

    Article  ADS  Google Scholar 

  108. R. Zhou, T. Zhang, R. Zhou, S. Wang, D. Mei, A. Mai-Prochnow, P.J. Cullen, Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis. Green Chem. 23(8), 2977–2985 (2021)

    Article  Google Scholar 

  109. R. Zhou, R. Zhou, D. Alam, T. Zhang, W. Li, Y. Xia, H. Masood, Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chem. Eng. J. 403, 126413 (2021)

    Article  Google Scholar 

  110. R. Zhou, R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, K.K. Ostrikov, Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chem. 20(23), 5276–5284 (2018)

    Article  Google Scholar 

  111. R. Zhou, R. Zhou, P. Wang, B. Luan, X. Zhang, Z. Fang, K. Bazaka, Microplasma bubbles: reactive vehicles for biofilm dispersal. ACS Appl. Mater. Interfaces. 11(23), 20660–20669 (2019)

    Article  Google Scholar 

  112. R. Zhou, R. Zhou, P. Wang, Y. Xian, A. Mai-Prochnow, X. Lu, K. Bazaka, Plasma-activated water: generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 53(30), 303001 (2020)

    Article  Google Scholar 

  113. R. Zhou, R. Zhou, X. Zhang, J. Zhuang, S. Yang, K. Bazaka, K.K. Ostrikov, Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci. Rep. 6(1), 1–11 (2016)

    Google Scholar 

  114. X. Zhou, D. Cai, S. Xiao, M. Ning, R. Zhou, S. Zhang, X. Dai, InvivoPen: A novel plasma source for in vivo cancer treatment. J. Cancer 11(8), 2273 (2020)

    Article  Google Scholar 

  115. X. Zou, M. Xu, S. Pan, L. Gan, S. Zhang, H. Chen, K.K. Ostrikov, Plasma activated oil: Fast production, reactivity, stability, and wound healing application. ACS Biomater. Sci. Eng. 5(3), 1611–1622 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusen Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, R., Zhang, T., Zhou, R. (2023). Pulsed Discharges for Water Activation and Plasma-Activated Water Production. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_11

Download citation

Publish with us

Policies and ethics