Skip to main content

Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Conditions

  • Chapter
  • First Online:
Microplastic sources, fate and solution

Abstract

The use of plastics in agriculture has been intensified due to the associated benefits in diverse aspects such as crop yield, water saving and protection against weeds or plagues. Although there is a long list of plastic elements used in agriculture, their main use is for mulching and for covering greenhouses. The mulching plastics pose a hazard due to the intimate contact with the soil. The complete elimination of mulching is laborious and costly due to the hardly biodegradable nature, mainly low-density polyethylene, which takes a long time for complete degradation. However, the partial degradation and distribution of plastic mulching leads to the release of the microplastics that pose a hazard to the environment. This chapter reviews the effects of plastic film mulching in the environment related to the release of microplastics or other substances used as additives such as heavy metals or persistent organic pollutants. Also, new emerging alternatives more respectful toward the environment are covered, such as biodegradable formulas or the use of alternatives like paper or wool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EIP-AGRI Focus Group (2021) Reducing the plastic footprint of agriculture. Final Report 2021, Brussels (Belgium). https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-plastic-footprint-final. Accessed 2 July 2021

  2. Zhang H, Miles C, Gerdeman B, LaHue DG, DeVetter L (2021) Plastic mulch use in perennial fruit cropping systems – a review. Sci Hortic (Amsterdam) 281:109975. https://doi.org/10.1016/j.scienta.2021.109975

    Article  CAS  Google Scholar 

  3. Agriculture Plastics Environment Europe (n.d.). https://apeeurope.eu/

  4. Chen N, Li X, Šimůnek J, Shi H, Hu Q, Zhang Y (2021) Evaluating the effects of biodegradable and plastic film mulching on soil temperature in a drip-irrigated field. Soil Tillage Res 213:105116. https://doi.org/10.1016/j.still.2021.105116

    Article  Google Scholar 

  5. Dai Z, Hu J, Fan J, Fu W, Wang H, Hao M (2021) No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric Ecosyst Environ 309:107288. https://doi.org/10.1016/j.agee.2020.107288

    Article  CAS  Google Scholar 

  6. Zheng L, Pei J, Jin X, Schaeffer S, An T, Wang J (2018) Impact of plastic film mulching and fertilizers on the distribution of straw-derived nitrogen in a soil-plant system based on 15N–labeling. Geoderma 317:15–22. https://doi.org/10.1016/j.geoderma.2017.12.020

    Article  CAS  Google Scholar 

  7. Bonanomi G, Chirico GB, Palladino M, Gaglione SA, Crispo DG, Lazzaro U, Sica B, Cesarano G, Ippolito F, Sarker TC, Rippa M, Scala F (2017) Combined application of photo-selective mulching films and beneficial microbes affects crop yield and irrigation water productivity in intensive farming systems. Agric Water Manag 184:104–113. https://doi.org/10.1016/j.agwat.2017.01.011

    Article  Google Scholar 

  8. Lee ON, Park HY (2020) Effects of different colored film mulches on the growth and bolting time of radish (Raphanus sativus L.). Sci Hortic (Amsterdam) 266:109271. https://doi.org/10.1016/j.scienta.2020.109271

    Article  CAS  Google Scholar 

  9. Jones H, Black TA, Jassal RS, Nesic Z, Johnson MS, Smukler S (2021) Characterization of shortwave and longwave properties of several plastic film mulches and their impact on the surface energy balance and soil temperature. Sol Energy 214:457–470. https://doi.org/10.1016/j.solener.2020.11.058

    Article  Google Scholar 

  10. Solomakhin AA, Blanke MM (2007) Overcoming adverse effects of hailnets on fruit quality and microclimate in an apple orchard. J Sci Food Agric 87:2625–2637. https://doi.org/10.1002/jsfa.3022

    Article  CAS  PubMed  Google Scholar 

  11. Ibarra-Jiménez L, Lira-Saldivar RH, Valdez-Aguilar LA, Del Río JL (2011) Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agric Scand Sect B Soil Plant Sci 61:365–371. https://doi.org/10.1080/09064710.2010.495724

    Article  CAS  Google Scholar 

  12. Katan J, Gamliel A (2014) Plant health management: soil solarization. In: Encyclopedia of agriculture and food systems. Elsevier, pp 460–471. https://doi.org/10.1016/B978-0-444-52512-3.00256-4

    Chapter  Google Scholar 

  13. Ding D, Wang N, Zhang X, Zou Y, Zhao Y, Xu Z, Chu X, Liu J, Bai Y, Feng S, Feng H, Siddique KHM, Wendroth O (2021) Quantifying the interaction of water and radiation use efficiency under plastic film mulch in winter wheat. Sci Total Environ 794:148704. https://doi.org/10.1016/j.scitotenv.2021.148704

    Article  CAS  PubMed  Google Scholar 

  14. Gao H, Yan C, Liu Q, Ding W, Chen B, Li Z (2019) Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis. Sci Total Environ 651:484–492. https://doi.org/10.1016/j.scitotenv.2018.09.105

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Li S, Cui Y, Qin S, Guo H, Yang D, Wang C (2021) Effect of drip irrigation on soil water balance and water use efficiency of maize in northwest China. Water 13:217. https://doi.org/10.3390/w13020217

    Article  Google Scholar 

  16. Jabran K, Chauhan BS (2018) Weed control using ground cover systems. In: Non-chemical weed control. Elsevier, pp 61–71. https://doi.org/10.1016/B978-0-12-809881-3.00004-8

    Chapter  Google Scholar 

  17. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529. https://doi.org/10.1007/s13593-011-0068-3

    Article  CAS  Google Scholar 

  18. PlascticsEurope Association of Plastics Manufacturers (2020) Plastics-the Facts 2020. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/es/resources/market-data. Accessed 2 July 2021

  19. Galati A, Scalenghe R (2021) Plastic end-of-life alternatives, with a focus on the agricultural sector. Curr Opin Chem Eng 32:100681. https://doi.org/10.1016/j.coche.2021.100681

    Article  Google Scholar 

  20. Kader MA, Senge M, Mojid MA, Ito K (2017) Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res 168:155–166. https://doi.org/10.1016/j.still.2017.01.001

    Article  Google Scholar 

  21. Sintim HY, Flury M (2017) Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ Sci Technol 51:1068–1069. https://doi.org/10.1021/acs.est.6b06042

    Article  CAS  PubMed  Google Scholar 

  22. Ban D, Žanić K, Dumičić G, Čuljak TG, Ban SG (2009) The type of polyethylene mulch impacts vegetative growth, yield, and aphid populations in watermelon production. J Food Agric Environ 7:543–550

    Google Scholar 

  23. Ruiz JM, Hernandez J, Castilla N, Romero L (1999) Potato performance in response to different mulches. 1. Nitrogen metabolism and yield. J Agric Food Chem 47:2660–2665. https://doi.org/10.1021/jf981314x

    Article  CAS  PubMed  Google Scholar 

  24. Farias-Larios J, Orozco-Santos M (1997) Effect of polyethylene mulch colour on aphid populations, soil temperature, fruit quality, and yield of watermelon under tropical conditions. New Zeal J Crop Hortic Sci 25:369–374. https://doi.org/10.1080/01140671.1997.9514028

    Article  Google Scholar 

  25. Zribi W, Aragüés R, Medina E, Faci JM (2015) Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res 148:40–45. https://doi.org/10.1016/j.still.2014.12.003

    Article  Google Scholar 

  26. Hughes BR, Zandstra J, Dale A (2012) Effects of mulch types on dayneutral strawberry production in three distinct environments in Ontario. Int J Fruit Sci 13:255–263. https://doi.org/10.1080/15538362.2013.713255

    Article  Google Scholar 

  27. Torres-Olivar V, Ibarra-Jiménez L, Cárdenas-Flores A, Lira-Saldivar RH, Valenzuela-Soto JH, Castillo-Campohermoso MA (2017) Changes induced by plastic film mulches on soil temperature and their relevance in growth and fruit yield of pickling cucumber. Acta Agric Scand B Soil Plant Sci 68:97–103. https://doi.org/10.1080/09064710.2017.1367836

    Article  Google Scholar 

  28. Ibarra-Jiménez L, Zermeño-González A, Munguía-López J, Quezada-Martín MAR, La Rosa-Ibarra MD (2008) Photosynthesis, soil temperature and yield of cucumber as affected by colored plastic mulch. Acta Agric Scand B Soil Plant Sci 58:372–378. https://doi.org/10.1080/09064710801920297

    Article  Google Scholar 

  29. Zhang YL, Wang FX, Shock CC, Yang KJ, Kang SZ, Qin JT, Li SE (2017) Effects of plastic mulch on the radiative and thermal conditions and potato growth under drip irrigation in arid Northwest China. Soil Tillage Res 172:1–11. https://doi.org/10.1016/j.still.2017.04.010

    Article  CAS  Google Scholar 

  30. APE EUROPE (2020) Plasticulture. https://apeeurope.eu/documentations-press-ape-europe/. Accessed 2 July 2021

  31. Martín-Lara MA, Godoy V, Quesada L, Lozano EJ, Calero M (2021) Environmental status of marine plastics pollution in Spain. Mar Pollut Bull 170. https://doi.org/10.1016/j.marpolbul.2021.112677

  32. Huang Y, Liu Q, Jia W, Yan C, Wang J (2020) Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 260:114096. https://doi.org/10.1016/j.envpol.2020.114096

    Article  CAS  PubMed  Google Scholar 

  33. Meng F, Fan T, Yang X, Riksen M, Xu M, Geissen V (2020) Effects of plastic mulching on the accumulation and distribution of macro and micro plastics in soils of two farming systems in Northwest China. PeerJ 8:e10375. https://doi.org/10.7717/peerj.10375

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zylstra ER (2013) Accumulation of wind-dispersed trash in desert environments. J Arid Environ 89:13–15. https://doi.org/10.1016/j.jaridenv.2012.10.004

    Article  Google Scholar 

  35. Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    Article  CAS  PubMed  Google Scholar 

  36. Beriot N, Zomer P, Zornoza R, Geissen V (2020) A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ 8:e9876. https://doi.org/10.7717/peerj.9876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cicloplast (n.d.) Agricultural plastics industry adopts the European Plasticulture Strategy promoted by APE Europe. http://www.cicloplast.com/index.php?accion=notas-de-prensa&subAccion=ver-noticia&id=95&page=1&frm%5bkeyword%5d=&actopc=42. Accessed 2 July 2021

  38. EPRO (n.d.). https://www.epro-plasticsrecycling.org/. Accessed 2 July 2021

  39. Guo JJ, Huang XP, Xiang L, Wang YZ, Li YW, Li H, Cai QY, Mo CH, Wong MH (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263

    Article  CAS  PubMed  Google Scholar 

  40. Qi R, Jones DL, Li Z, Liu Q, Yan C (2020) Behaviour of microplastics and plastic film residues in the soil environment: a critical review. Sci Total Environ 703:134722. https://doi.org/10.1016/j.scitotenv.2019.134722

    Article  CAS  PubMed  Google Scholar 

  41. Yan L, Peng W (2021) Research of new pollutant microplastics in soil. IOP Conf Ser Earth Environ Sci 781:052005. https://doi.org/10.1088/1755-1315/781/5/052005

    Article  Google Scholar 

  42. Fakour H, Lo SL, Yoashi NT, Massao AM, Lema NN, Mkhontfo FB, Jomalema PC, Jumanne NS, Mbuya BH, Mtweve JT, Imani M (2021) Quantification and analysis of microplastics in farmland soils: characterization, sources, and pathways. Agriculture 11:330. https://doi.org/10.3390/agriculture11040330

    Article  CAS  Google Scholar 

  43. Yang L, Zhang Y, Kang S, Wang Z, Wu C (2021) Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Sci Total Environ 780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546

    Article  CAS  PubMed  Google Scholar 

  44. Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, Laforsch C (2018) Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep 8:17950. https://doi.org/10.1038/s41598-018-36172-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY (2018) Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85. https://doi.org/10.1016/j.watres.2018.05.034

    Article  CAS  PubMed  Google Scholar 

  46. Schothorst B, Beriot N, Lwanga EH, Geissen V (2021) Sources of light density microplastic related to two agricultural practices: the use of compost and plastic mulch. Environment 2021(8):36. https://doi.org/10.3390/environments8040036

    Article  Google Scholar 

  47. Corradini F, Casado F, Leiva C, Huerta-Lwanga E, Geissen V (2021) Microplastics occurrence and frequency in soils under different land uses. Sci Total Environ 752:141917. https://doi.org/10.1016/j.scitotenv.2020.141917

    Article  CAS  PubMed  Google Scholar 

  48. Meixner K, Kubiczek M, Fritz I (2020) Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples. AIMS Environ Sci 7:174–191. https://doi.org/10.3934/environsci.2020011

    Article  CAS  Google Scholar 

  49. Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4:eaap8060. https://doi.org/10.1126/sciadv.aap8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillampää M (2020) Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev 203:103118. https://doi.org/10.1016/j.earscirev.2020.103118

    Article  CAS  Google Scholar 

  51. Allen S, Allen D, Phoenix VR, Roux G, Durántez Jiménez P, Simomeau A, Binet S, Galop D (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12:339–344. https://doi.org/10.1038/s41561-019-0335-5

    Article  CAS  Google Scholar 

  52. Liu K, Wang X, Fang T, Xu P, Zhu L, Li D (2019) Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110

    Article  CAS  PubMed  Google Scholar 

  53. Beriot N, Peek J, Zornoza R, Geissen V, Lwanga EH (2021) Low density-microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ 755:142653. https://doi.org/10.1016/j.scitotenv.2020.142653

    Article  CAS  PubMed  Google Scholar 

  54. Huerta-Lwanga E, Mendoza-Vega J, Quej V, Chi J, Sanchez del Cid L, Chi C, Escalona-Segura G, Gertsen H, Salánki T, Van der Ploeg M, Koelmans AA, Geissen V (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Nat Sci Rep 7:14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  Google Scholar 

  55. Ljung E, Olesen K, Andersson P, Fältström E, Vollertsen J, Wittgren H, Hagman M (2018) Mikroplaster i kretsloppet. Svenskt Vatten Utveckling Program, Rapport N° 2018-13, 48 p

    Google Scholar 

  56. Rezaei M, Riksen M, Sirjani E, Sameni A, Geissen V (2019) Wind erosion as a driver for transport light density microplastics. Sci Total Environ 669:273–281. https://doi.org/10.1016/j.scitotenv.2019.02.382

    Article  CAS  PubMed  Google Scholar 

  57. Isari E, Papaioannou D, Kalavrouziotis I, Karapanagioti H (2021) Microplastics in agricultural soils: a case study in cultivation of watermelons and canning tomatoes. Water 13:2168. https://doi.org/10.3390/w13162168

    Article  CAS  Google Scholar 

  58. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, Tong Y, Wen D, Luo Y, Barceló D (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814. https://doi.org/10.1016/j.jhazmat.2019.121814

    Article  CAS  PubMed  Google Scholar 

  59. Betageri VM, Kottiswaran SV (2018) Effects of plastic mulching on yield of grafted brinjal. Int J Curr Microbial Appl Sci 7(7):2516–2522

    Article  Google Scholar 

  60. de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Gorlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052

    Article  PubMed  Google Scholar 

  61. Duppong LM, Delate K, Liebman M, Horton R, Romerom F, Kraus G, Petrich J, Chowdbury PK (2006) Crop Sci 44(3):861–869

    Article  Google Scholar 

  62. Kwon YS, Park SK, Ko KD (1988) Effect of different mulch materials on the soil environment, growth and yield of red pepper (Capsicum annum L.). Res Rep Rural Dev Adm Hort Korea Republic 30:9–17

    Google Scholar 

  63. Merline Sheela A, Shanmugasundaram R, Sundaram MD (2005) Effect of organic amendments on the oxygen uptake of Pseudomonas putida- PAPs -1 in chromium contaminated pond ash. Soil Sediment Contam 14(1):71–84

    Article  Google Scholar 

  64. Singh PN, Joshi BP, Singh G (1998) Effect of mulch on moisture conservation, irrigation requirement and yield of potato. Indian J Agron 32(451):451

    Google Scholar 

  65. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Frör O, Schaumann GE (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705. https://doi.org/10.1016/j.scitotenv.2016.01.153

    Article  CAS  PubMed  Google Scholar 

  66. Liu EK, He WQ, Yan CR (2014) ‘White revolution’ to ‘white pollution’–agricultural plastic film mulch in China. Environ Res Lett 9:091001. https://doi.org/10.1088/1748-9326/9/9/091001

    Article  Google Scholar 

  67. Zhang D, Ng EL, Hu W, Wang H, Galaviz P, Yang H, Sun W, Li C, Ma X, Fu B, Zhao P, Zhang F, Jin S, Zhou M, Du L, Peng C, Zhang X, Xu Z, Xi B, Liu X, Sun S, Cheng Z, Jiang L, Wang Y, Gong L, Kou C, Li Y, Ma Y, Huang D, Zhu J, Yao J, Lin C, Qin S, Zhou L, He B, Chen D, Li H, Zhai L, Lei Q, Wu S, Zhang Y, Pan J, Gu B, Liu H (2020) Plastic pollution in croplands threatens long-term food security. Glob Chang Biol. https://doi.org/10.1111/gcb.15043

  68. Smith M, Love DC, Rochman C, Neff RA (2018) Microplastic in seafood and implications of human health. Curr Environ Health Rep 5(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumar V, Merline Sheela A (2021) Effect of plastic film mulching on the distribution of plastic residues in agricultural fields. Chemosphere 273:128590. https://doi.org/10.1016/j.chemosphere.2020.128590

    Article  CAS  Google Scholar 

  70. Li W, Wufuer R, Duo J, Wang S, Luo Y, Zhang D, Pan X (2020) Microplastics in agricultural soils: extraction and characterization after different periods of polyethylene film mulching in an arid region. Sci Total Environ 749:141420

    Article  CAS  PubMed  Google Scholar 

  71. Zhu D, Chen QL, An XL, Yang XR, Christie P, Ke X, Wu LH, Zhu YG (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem 116:302–310

    Article  CAS  Google Scholar 

  72. Maab S, Daphi D, Lehmann A, Rilling MC (2017) Transport of microplastic by two collembolan species. Environ Pollut 225:456–459. https://doi.org/10.1016/j.envpol.2017.03.009

    Article  CAS  Google Scholar 

  73. Gaylor MO, Harvey E, Hale RC (2013) Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils. Environ Sci Technol 47:13831–13839. https://doi.org/10.1021/es403750a

    Article  CAS  PubMed  Google Scholar 

  74. Oliviero M, Tato T, Schiavo S, Fernández V, Manzo S, Beiras R (2019) Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environ Pollut 247:706–715. https://doi.org/10.1016/j.envpol.2019.01.098

    Article  CAS  PubMed  Google Scholar 

  75. Wei W, Huang QS, Sun J, Wang JY, Wu SL, Ni BJ (2019) Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ Sci Technol 53(5):2509–2517. https://doi.org/10.1021/acs.est.8b07069

    Article  CAS  PubMed  Google Scholar 

  76. Jiang XJ, Liu W, Wang E, Zhou T, Xin P (2017) Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res 166:100–107. https://doi.org/10.1016/j.still.2016.10.011

    Article  Google Scholar 

  77. Bolan N, Kirkham MB, Halsband C, Nugegoda D, Ok YS (2020) Particulate plastics in terrestrial and aquatic environments. CRC Press. ISBN 9780367511401

    Book  Google Scholar 

  78. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  79. Kumar M, Xiong X, He M, Tsang DCW, Gupta J, Khan E, Harrad S, Hou D, Ok YS, Bolan NS (2020) Microplastics as pollutants in agricultural soils. Environ Pollut 265:114980. https://doi.org/10.1016/j.envpol.2020.114980

    Article  CAS  PubMed  Google Scholar 

  80. Fu X, Du Q (2011) Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses. J Agric Food Chem 59:11585–11588. https://doi.org/10.1021/jf203502e

    Article  CAS  PubMed  Google Scholar 

  81. Hu X, Bei W, Shan X (2003) Survey of phthalate pollution in arable soils in China. J Environ Monit 5:649. https://doi.org/10.1039/b304669a

    Article  CAS  PubMed  Google Scholar 

  82. Niu L, Xu Y, Xu C, Yun L, Liu W (2014) Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environ Pollut 195:16–23. https://doi.org/10.1016/j.envpol.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  83. Wang J, Luo Y, Teng Y, Ma W, Christie P, Li Z (2013) Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ Pollut 180:265–273. https://doi.org/10.1016/j.envpol.2013.05.036

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Wang F, Xiang L, Gu C, Redmile-Gordon M, Sheng H, Wang Z, Fu Y, Bian Y, Jiang X (2021) Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters. Environ Sci Technol 55:3676–3685. https://doi.org/10.1021/acs.est.0c07008

    Article  CAS  PubMed  Google Scholar 

  85. He L, Gielen G, Bolan NS, Zhang X, Qin H, Huang H, Wang H (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35:519–534. https://doi.org/10.1007/s13593-014-0270-1

    Article  CAS  Google Scholar 

  86. Zeng F, Cui K, Xie Z, Wu L, Liu M, Sun G, Lin Y, Luo D, Zeng Z (2008) Phthalate esters (PAEs): emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environ Pollut 156:425–434. https://doi.org/10.1016/j.envpol.2008.01.045

    Article  CAS  PubMed  Google Scholar 

  87. Du QZ, Fu XW, Xia HL (2009) Uptake of di-(2-ethylhexyl) phthalate from plastic mulch film by vegetable plants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:1325–1329. https://doi.org/10.1080/02652030903081952

    Article  CAS  Google Scholar 

  88. Ma T, Teng Y, Christie P, Luo Y (2014) Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate. Front Environ Sci Eng 9:259–268. https://doi.org/10.1007/s11783-014-0652-2

    Article  CAS  Google Scholar 

  89. Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, Teng Y, Christie P, Luo Y (2016) Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177. https://doi.org/10.1016/j.chemosphere.2016.02.076

    Article  CAS  PubMed  Google Scholar 

  90. Wang D, Xi Y, Shi X-Y, Zhong Y-J, Guo C-L, Han Y-N, Li F-M (2021) Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ Pollut 286:117546. https://doi.org/10.1016/j.envpol.2021.117546

    Article  CAS  PubMed  Google Scholar 

  91. Bandopadhyay S, Martin-Closas L, Pelacho A, DeBruyn JM (2018) Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front Microbiol 9:819. https://doi.org/10.3389/fmicb.2018.00819

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM (2015) Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci Total Environ 523:74–81. https://doi.org/10.1016/j.scitotenv.2015.03.142

    Article  CAS  PubMed  Google Scholar 

  93. Lwanga EH, Vega JM, Quej VK, Chi JA, del Cid LS, Chi C, Segura GE, Gertsen H, Salánki T, van der Ploeg M, Koelmans AA, Geissen V (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7:14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  Google Scholar 

  94. Li Z, Li R, Li Q, Zhou J, Wang G (2020) Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere 255:127041. https://doi.org/10.1016/j.chemosphere.2020.127041

    Article  CAS  PubMed  Google Scholar 

  95. Lwanga EH, Gertsen H, Gooren H, Peters P, Salanki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V (2017) Incorporation of microplastics from litter into burrows of lumbricus terrestris. Environ Pollut 220:523–531

    Article  Google Scholar 

  96. Iqbal S, Xu J, Allen SD, Khan S, Nadir S, Arif MS, Yasmeen T (2020) Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 260:127578. https://doi.org/10.1016/j.chemosphere.2020.127578

    Article  CAS  PubMed  Google Scholar 

  97. SARE (2007) Managing cover crops profitability, 3rd edn. Handbook Series Book 9. Sustainable Agriculture Research and Education (SARE) program, with funding from the National Institute of Food and Agriculture, U.S. Department of Agriculture, 248 p

    Google Scholar 

  98. Tepe E, Hoover E, Poppe S (2008) The wool mulch system of producing strawberries. A manual for commercial growers in Minnesota. University of Minnesota (ed), 34 p

    Google Scholar 

  99. Tillman J, Nair A, Batzer J, Gleason M (2015) Strip-tillage and row cover use in organically and conventionally grown summer squash. Iowa State Res Farm Progress Rep 2187:7–9

    Google Scholar 

  100. Calero M, Godoy V, Quesada L, Martín-Lara MA (2021) Green strategies for microplastics reduction. Curr Opin Green Sustain Chem 28:100442. https://doi.org/10.1016/j.cogsc.2020.100442

    Article  CAS  Google Scholar 

  101. Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99:1039–1056. https://doi.org/10.1007/s00253-014-6267-5

    Article  CAS  PubMed  Google Scholar 

  102. Moreno MM, Moreno A (2008) Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hortic 116:256–263. https://doi.org/10.1016/j.scienta.2008.01.00

    Article  CAS  Google Scholar 

  103. Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A, Cesar G, Gontard N, Gastaldi E (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439. https://doi.org/10.1016/j.chemosphere.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  104. Bandopadhyay S, Liquet Y González J, Henderson K, Anunciado M, Hayes D, De Bruyn J (2020) Soil microbial communities associated with biodegradable plastic mulch films. Front Microbiol 11:587074. https://doi.org/10.3389/fmicb.2020.587074

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beriot N (2020) EIPG-AGRI Focus Group. Reducing the plastic footprint of agriculture. Starting paper. May 2020. 29 p

    Google Scholar 

  106. Ardisson GB, Tosin M, Barbale M, Degli-Innocenti F (2014) Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front Microbiol 5:710. https://doi.org/10.3389/fmicb.2014.00710

    Article  Google Scholar 

  107. Sforzini S, Oliveri L, Chinaglia S, Viarengo A (2016) Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Front Environ Sci 4:68. https://doi.org/10.3389/fenvs.2016.00068

    Article  Google Scholar 

  108. Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S et al (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:40. https://doi.org/10.1186/2191-0855-2-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muroi F, Tachibana Y, Kobayashi Y, Sakurai T, Kasuya K (2016) Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym Degrad Stab 129:338–346. https://doi.org/10.1016/j.polymdegradstab.2016.05.018

    Article  CAS  Google Scholar 

  110. Serrano-Ruiz H, Martin-Closas L, Pelacho A (2021) Biodegradable plastic mulches: impact on the agricultural biotic environment. Sci Total Environ 750:141228. https://doi.org/10.1016/j.scitotenv.2020.141228

    Article  CAS  PubMed  Google Scholar 

  111. Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D, Wagner M, Kohler HE, McNeill K, Sander M (2018) Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci Adv 4:eaas9024. https://doi.org/10.1126/sciadv.aas9024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ahmed T, Shahid M, Azeem F, Rasul I, Shah A, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25:7287–7298. https://doi.org/10.1007/s11356-018-1234-9

    Article  CAS  Google Scholar 

  113. Goldberger JR, Jones RE, Miles CA, Wallace RW, Inglis DA (2013) Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew Agric Food Syst 30(2):143–153. https://doi.org/10.1017/S1742170513000276

    Article  Google Scholar 

  114. ASOBIOCOM (2018) Compostable and biodegradable plastic: an efficient and sustainable solution for agriculture report. 10 p

    Google Scholar 

  115. Shruti VC, Kutralam-Muniasamy G (2019) Bioplastics: missing link in the era of Microplastics. Sci Total Environ 697:134139. https://doi.org/10.1016/j.scitotenv.2019.134139

    Article  CAS  PubMed  Google Scholar 

  116. Green DS (2016) Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ Pollut 216:95–103. https://doi.org/10.1016/j.envpol.2016.05.043

    Article  CAS  PubMed  Google Scholar 

  117. Green DS, Boots B, Blockley DJ, Rocha C, Thompson R (2015) Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environ Sci Technol 49:5380–5389

    Article  CAS  PubMed  Google Scholar 

  118. Zuo L-Z, Li H-X, Lin L, Sun Y-X, Diao Z-H, Liu S, Zhang Z-Y, Xu X-R (2019) Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate coterephtalate) microplastics. Chemosphere 215:25–32

    Article  CAS  PubMed  Google Scholar 

  119. González-Pleiter M, Tamayo-Belda M, Pulido-Reyes G, Amariei G, Leganés F, Rosal R, Fernández-Piñas F (2019) Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci-Nano 6(5):1382–1392

    Article  Google Scholar 

  120. Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53:11496–11506. https://doi.org/10.1021/acs.est.9b03304

    Article  CAS  PubMed  Google Scholar 

  121. Serrano-Ruiz H, Martin-Closas L, Pelacho AM (2018) Application of an in vitro plant ecotoxicity test to unused biodegradable mulches. Polym Degrad Stab 158:102–110. https://doi.org/10.1016/j.polymdegradstab.2018.10.016

    Article  CAS  Google Scholar 

  122. Wang F, Zhang X, Zhang SS, Zhang SS, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791. https://doi.org/10.1016/j.chemosphere.2020.126791

    Article  CAS  PubMed  Google Scholar 

  123. HSMG (n.d.) Agricultural paper mulch, tag and ticket. https://www.hsmgrp.com/applications/agricultural-paper-mulch/. Accessed 28 July 2021

  124. Haapala T, Palonen P, Korpela A, Ahokas J (2014) Feasibility of paper mulches in crop production: a review. Agric Food Sci 23:60–79. https://doi.org/10.23986/afsci.8542

    Article  Google Scholar 

  125. Saglam M, Sintim HY, Bary AI, Miles CA, Ghimire S, Inglis DA, Flury M (2017) Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric Water Manag 193:240–250. https://doi.org/10.1016/j.agwat.2017.08.011

    Article  Google Scholar 

  126. Sánchez E, Lamont WJ, Orzolek MD (2008) Newspaper mulches for supressing weeds for organic high-tunnel cucumber production. Hort Technol 18:154–157

    Article  Google Scholar 

  127. Ahokas J, Korpela A, Ince A, Güzel E, Asikainen J, Haapala T, Kujanpää M, Mikkola H, Pitkänen M, Tamminen A, Vikman M (2014) Paper based mulches as an alternative to polyethylene mulch in vegetable production. J Agric Machinery Sci 10(1):73–78

    Google Scholar 

  128. Barman KK (2016) Mulching as a component of organic/eco-friendly farming. In Conservation of natural resources and its efficient utilization for sustaining hill agriculture. ICAR Research Complex for NEG Region (ed), pp 26–30

    Google Scholar 

  129. Hoidal N (2021) Exploring alternatives to plastic mulch. https://blog-fruit-vegetable-ipm.extension.umn.edu/2021/01/exploring-alternatives-to-plastic-mulch.html. Accessed 28 July 2021

  130. Peng Z, Ting W, Haixia W, Min W, Xiangping M, Siwei M, Rui Z, Zhikuan J, Qingfang H (2015) Effects of straw mulch on soil water and winter wheat production in dryland farming. Nat Sci Rep 5:10725. https://doi.org/10.1038/srep10725

    Article  CAS  Google Scholar 

  131. Song D, Tariq A, Pan K, Chen W, Zhang A, Sun X, Ran Y, Zeng F (2020) Effects of straw mulching practices on soil nematode communities under walnut plantation. Nat Sci Rep 10:15351. https://doi.org/10.1038/s41598-020-72530-5

    Article  Google Scholar 

  132. Cook HF, Valdes GS, Lee HC (2006) Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res 91:227–235

    Article  Google Scholar 

  133. Král M, Dvorák P, Capouchová I (2020) The effect of straw mulch and compost application on the soil lossed in potatoes cultivation. Plant Soil Environ 66(9):446–452. https://doi.org/10.17221/330/2020-PSE

    Article  Google Scholar 

  134. Rowe B, Fernandez T, Cregg B (2004) Effect of wool mulch on propagation, crop growth, and weed control in liners. Propagation of Ornamental Plants 4(2):29–36

    Google Scholar 

  135. Kotodziejczyk M (2015) The effect of living mulches and conventional methods of weed control on weed infestation and potato yield. Sci Hortic 191:127–133. https://doi.org/10.1016/j.scienta.2015.05.016

    Article  Google Scholar 

  136. Ginakes P, Grossman JM, Baker JM, Sooksa-nguan T (2020) Living mulch management spatially localizes nutrient cycling in organic corn production. Agriculture 10:243. https://doi.org/10.3390/agriculture10060243

    Article  CAS  Google Scholar 

  137. James B, Trovati G, Peñalva C, Czech L, Mendioroz I, Milicic V (2021) EIP-AGRI Focus Group. Reducing the plastic footprint of agriculture. Minipaper D: Agricultural management, on site practice to reduce plastic use and the contamination in the environment. February 2021, 23 p

    Google Scholar 

  138. Marí A, Pardo G, Cirujeda A, Martínez Y (2019) Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) crop. Agronomy 9:36. https://doi.org/10.3390/agronomy9010036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Calero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calero, M., Muñoz, M.J., Solís, R.R., Lozano, E.J., Godoy, V., Martín-Lara, M.Á. (2023). Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Conditions. In: Khan, A., Wang, C., Asiri, A.M. (eds) Microplastic sources, fate and solution. Springer, Singapore. https://doi.org/10.1007/978-981-99-0695-6_3

Download citation

Publish with us

Policies and ethics