Skip to main content

T3SFNet: A Tuned Topological Temporal-Spatial Fusion Network for Motor Imagery with Rehabilitation Exoskeleton

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1787))

Included in the following conference series:

  • 759 Accesses

Abstract

In recent years, motor imagery-based brain computer interfaces (MI-BCI) combined with exoskeleton robot has proved to be a promising method for spinal cord injury (SCI) rehabilitation training. The core of BCI is to achieve a high accurate movement prediction based on patient’s MI. The inconsistent response frequency of MI in different trials and subjects leads to the limited performance accuracy of MI movement prediction method for the single subject. The individual differences in the activation patterns of MI brain regions bring a greater challenge to the generalization ability of the method. According to the MI mechanism, this paper proposes a graph-based tuned topological temporal-spatial fusion network (T3SFNet) for MI electroencephalography (MI-EEG) limb movement prediction. The proposed method designs a learnable EEG tuning mechanism to fuse and enhance the subject’s MI response band data, and then uses a channel node-based graph convolutional network and a temporal-spatial fusion convolutional network to extract the topological features and spatiotemporal coupling features of the fused band data respectively. We evaluate the proposed approach on two MI datasets and show that our method outperforms state-of-the-art methods in both within-subject and cross-subject situations. Furthermore, our method shows surprising results on the small-sample migration test, reaching the prediction baseline with only \(5\%\) of the data sample size. Ablation experiments of the model demonstrate the effectiveness and necessity of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Spinal Cord Injury, 384 (2013)

    Google Scholar 

  2. Chen, X., Chen, D., Chen, C., et al.: The epidemiology and disease burden of traumatic spinal cord injury in China: a systematic review. Chin. J. Evid. Based Med. 18(2), 143–150 (2018)

    MathSciNet  Google Scholar 

  3. Samejima, S., Khorasani, A., Ranganathan, V., et al.: Brain-computer-spinal interface restores upper limb function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1233–1242 (2021)

    Article  Google Scholar 

  4. Davis, K., Meschede-Krasa, B., Cajigas, I., et al.: Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury. J. Neuroeng. Rehabil. 19(1), 114 (2022)

    Article  Google Scholar 

  5. Zulauf-Czaja, A., Al-Taleb, M., Purcell, M., et al.: On the way home: a BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: a usability study. J. Neuroeng. Rehabil. 18(1), 118 (2021)

    Article  Google Scholar 

  6. Burianov, H., Marstaller, L., Rich, A., et al.: Motor neuroplasticity: a MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 146, 107539 (2022)

    Article  Google Scholar 

  7. Zhou, L., Zhu, Q., Wu, B., et al.: A comparison of directed functional connectivity among fist-related brain activities during movement imagery, movement execution, and movement observation. Brain Res. 1777, 147769 (2022)

    Article  Google Scholar 

  8. Ang, K., Chin, Z., Zhang, H., et al.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397. IEEE (2008)

    Google Scholar 

  9. Park, H., Kim, J., Min, B., et al.: Motor imagery EEG classification with optimal subset of aavelet based common spatial pattern and kernel extreme learning machine. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2863–2866. IEEE (2017)

    Google Scholar 

  10. Graimann, B., Allison, B., Pfurtscheller, G.: Brain-computer interfaces: a gentle introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces, pp. 1–27. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02091-9_1

    Chapter  Google Scholar 

  11. Lawhern, V., Solon, A., Waytowich, N., et al.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  12. Tabar, Y., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016)

    Article  Google Scholar 

  13. Chen, J., Yi, W., Wang, D., et al.: FB-CGANet: filter bank channel group attention network for multi-class motor imagery classification. J. Neural Eng. 19(1), 016011 (2022)

    Article  Google Scholar 

  14. McEvoy, L., Smith, M., Gevins, A.: Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cereb. Cortex 8(7), 574563 (1998)

    Article  Google Scholar 

  15. Zhang, Y., Huang, H.: New graph-blind convolutional network for brain connectome data analysis. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 669–681. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_52

    Chapter  Google Scholar 

  16. Zhao, M., Yan, W., Luo, N., et al.: An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data. Med. Image Anal. 78, 102413 (2022)

    Article  Google Scholar 

  17. Li, Y., Zhong, N., Taniar, D., et al.: MCGNet+: an improved motor imagery classification based on cosine similarity. Brain Inform. 9(1), 1–11 (2022)

    Article  Google Scholar 

  18. Feng, N., Hu, F., Wang, H., et al.: Motor intention decoding from the upper limb by graph convolutional network based on functional connectivity. Int. J. Neural Syst. 31(12), 2150047 (2021)

    Article  Google Scholar 

  19. Hou, Y., Jia, S., Lun, X., et al.: GCNs-Net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2022)

    Google Scholar 

  20. Hamedi, M., Salleh, S., Noor, A.: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput. 28(6), 999–1041 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brunner, C., Leeb, R., Mller-Putz, G., et al.: BCI Competition 2008CGraz Data Set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, vol. 16, pp. 1–6 (2008)

    Google Scholar 

  22. Shi, K., Huang, R., Mu, F., et al.: A novel multimodal human-exoskeleton interface based on EEG and sEMG activity for rehabilitation training. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 8076–8082. IEEE (2022)

    Google Scholar 

  23. Shi, K., Huang, R., Peng, Z., et al.: MCSNet: channel synergy-based human-exoskeleton interface with surface electromyogram. Front. Neurosci. 15, 704603 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (No. 2018AAA0102504), the National Natural Science Foundation of China (NSFC) (No. 62003073, No. 62103084, No. 62203089), and the Sichuan Science and Technology Program (No. 2021YFG0184, No. 2020YFSY0012, No. 2022NSFSC0890), the Medico-Engineering Cooperation Funds from UESTC (No. ZYGX2021YGLH003, No. ZYGX2022YGRH003), and the China Postdoctoral Science Foundation Program (No. 2021M700695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, K. et al. (2023). T3SFNet: A Tuned Topological Temporal-Spatial Fusion Network for Motor Imagery with Rehabilitation Exoskeleton. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics