Skip to main content

New Graph-Blind Convolutional Network for Brain Connectome Data Analysis

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Human connectome provides essential insights in diagnosing many psychiatric disorders. Though machine learning methods in predicting clinical scores have been successfully applied, it is still challenging to capture the complex relation and exploit the graph structure of brain networks. In this paper, we proposed a method to address the problem by extracting the graph embeddings using graph convolutional network (GCN), and using multi-layer perceptron for the regression. Particularly, previous GCN explicitly requires pre-defined graph structures which is not clearly defined in brain connectome. To address this problem, we showed that with naive complete graph structure, GCN can get meaningful results. Meanwhile, an effective algorithm was proposed to learn the graph structure from the data, via generating random graph during training based on the small-world model. Also, the advantages of GCN over multi-layer perceptron was discussed. The experiments demonstrate that the proposed method outperform related baselines significantly on predicting depression scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atwood, J., et al.: Diffusion-convolutional neural networks. In: NeurIPS, pp. 1993–2001 (2016)

    Google Scholar 

  2. Bassett, D.S., et al.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  3. Belkin, M., et al.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NeurIPS, pp. 585–591 (2002)

    Google Scholar 

  4. Bullmore, E., et al.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    Article  MathSciNet  Google Scholar 

  5. Craddock, R.C., et al.: Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62(6), 1619–1628 (2009)

    Article  MathSciNet  Google Scholar 

  6. Defferrard, M., et al.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS, pp. 3844–3852 (2016)

    Google Scholar 

  7. Dhillon, I.S., et al.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE TPAMI 29(11), 1944–1957 (2007)

    Article  Google Scholar 

  8. Du, S.S., et al.: Gradient descent finds global minima of deep neural networks. arXiv preprint arXiv:1811.03804 (2018)

  9. Fornito, A., et al.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    Article  Google Scholar 

  10. Gao, H., et al.: Identifying connectome module patterns via new balanced multi-graph normalized cut. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 169–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_21

    Chapter  Google Scholar 

  11. Grover, A., et al.: Node2vec: scalable feature learning for networks. In: ACM SIGKDD, pp. 855–864. ACM (2016)

    Google Scholar 

  12. Kipf, T.N., et al.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)

    Article  Google Scholar 

  14. Li, C., et al.: From which world is your graph. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1469–1479. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6745-from-which-world-is-your-graph.pdf

  15. Luo, D., et al.: New probabilistic multi-graph decomposition model to identify consistent human brain network modules. In: ICDM, pp. 301–310 (2016)

    Google Scholar 

  16. Mallat, S.: A wavelet tour of signal processing. Elsevier, San Diego (1999)

    MATH  Google Scholar 

  17. Perozzi, B., et al.: DeepWalk: online learning of social representations. In: ACM SIGKDD, pp. 701–710. ACM (2014)

    Google Scholar 

  18. Shuman, D.I., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  19. Sporns, O., et al.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    Article  Google Scholar 

  20. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  21. Veer, I.M., et al.: Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front. Syst. Neurosci. 4, 41 (2010)

    Article  Google Scholar 

  22. Wang, D., et al.: Structural deep network embedding. In: ACM SIGKDD, pp. 1225–1234. ACM (2016)

    Google Scholar 

  23. Wang, D., et al.: Human connectome module pattern detection using a new multi-graph minmax cut model. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 313–320. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_40

    Chapter  Google Scholar 

  24. Wang, S., et al.: Structural deep brain network mining. In: ACM KDD, pp. 475–484. ACM (2017)

    Google Scholar 

  25. Yahata, N., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7, 11254 (2016)

    Article  Google Scholar 

  26. Yoshida, K., et al.: Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PloS One 12(7), e0179638 (2017)

    Article  Google Scholar 

  27. Zeng, L.L., et al.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135(5), 1498–1507 (2012)

    Article  Google Scholar 

  28. Zhang, X., et al.: Can depression be diagnosed by response to mother’s face? A personalized attachment-based paradigm for diagnostic fMRI. PloS One 6(12), e27253 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by U.S. NSF IIS 1836945, IIS 1836938, DBI 1836866, IIS 1845666, IIS 1852606, IIS 1838627, IIS 1837956, and NIH R01 AG049371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Huang, H. (2019). New Graph-Blind Convolutional Network for Brain Connectome Data Analysis. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics