Skip to main content

Cox Point Process with Ridge Regularization: A Better Approach for Statistical Modeling of Earthquake Occurrences

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1771))

Included in the following conference series:

  • 268 Accesses

Abstract

The inhomogeneous Cox point process is commonly used for modeling natural disasters, such as earthquake occurrences. The inhomogeneous Cox point process is one of the popular models for the analysis of earthquake occurrences involving geological variables. The standard two-step procedure does not however perform well when such variables exhibit high correlation. Since ridge regularization has a reputation in handling multicollinearity problems, in this study we adapt such a procedure to the spatial point process framework. In particular, we modify the two-step procedure by adding ridge regularization for parameter estimation of the Cox point process model. The estimation procedure reduces to either the Poisson-based regression or logistic-based regression. We apply our proposed method to model the earthquake distribution in Sumatra. The results show that considering ridge regularization in the model is advantageous to obtain a smaller value of the Akaike Information Criterion (AIC). Especially, Cox point process model with a logistic-based regression has the smallest AIC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83(401), 9–27 (1988)

    Article  Google Scholar 

  2. Zahra, A., et al.: Strauss point modeling for seismic activity: a case study of earthquakes. Model. Earth Syst. Environ. 8(1), 1243–1251 (2021). https://doi.org/10.1007/s40808-021-01154-z

    Article  MathSciNet  Google Scholar 

  3. Shan, W., Wang, Z., Teng, Y., Wang, M.: Temporal and spatial evolution analysis of earthquake events in California and Nevada based on spatial statistics. ISPRS Int. J. Geo Inf. 10(7), 465 (2021)

    Article  Google Scholar 

  4. Choiruddin, A., Susanto, T.Y., Metrikasari, R.: Two-step estimation for modeling the earthquake occurrences in Sumatra by Neyman-Scott Cox point processes. In: Mohamed, A., Yap, B.W., Zain, J.M., Berry, M.W. (eds.) Soft Computing in Data Science 2021, CCIS, vol. 1489, pp. 146–159. Springer, Singapore (2021)

    Google Scholar 

  5. Choiruddin, A., Aisah, F.T., Iriawan, N.: Quantifying the effect of geological factors on distribution of earthquake occurrences by inhomogeneous Cox processes. Pure Appl. Geophys. 178(5), 1579–1592 (2021)

    Article  Google Scholar 

  6. Choiruddin, A., Susanto, T.Y., Husain, A., Kartikasari, Y.M.: kppmenet: Combining the kppm and elastic net regularization for inhomogeneous Cox point process with correlated covariates (2022)

    Google Scholar 

  7. Vasudevan, K., Eckel, S., Fleischer, F., Schmidt, V., Cook, F.A.: Statistical analysis of spatial point patterns on deep seismic reflection data: a preliminary test. Geophys. J. Int. 171(2), 823–840 (2007)

    Article  Google Scholar 

  8. Affan, M., Syukri, M., Wahyuna, L., Sofyan, H.: Spatial statistic analysis of earthquakes in Aceh Province year 1921–2014. Aceh Int. J. Sci. Technol. 5(2), 54–62 (2016)

    Article  Google Scholar 

  9. Lidyana, V., Darsono, Novita, S.S.: Distribution of earthquake in subduction zone and calculation of subduction angle in the Central Sumatra based on earthquake data period 1967–2016. In: 9th International Conference on Physics and Its Applications. IOP Conference Series 1153 (012021), Surakarta (2019)

    Google Scholar 

  10. Waagepetersen, R.P., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes. J. Royal Stat. Soc. Series B (Stat Methodol.) 71(3), 685–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sahara, D.P., Widiyantoro, S.: The pattern of local stress heterogeneities along the central part of the Great Sumatran fault: a preliminary result. In: 7th Asian Physics Symposium. IOP Conference Series 1204 (012091), Bandung (2019)

    Google Scholar 

  12. Natawidjaja, D.H.: Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. In: Global Colloquium on GeoSciences and Engineering. IOP Conference Series 118 (012001), Bandung (2018)

    Google Scholar 

  13. BMKG: Katalog Gempa Bumi Signifikan dan Merusak Tahun, pp. 1821–2018. BMKG, Jakarta (2019)

    Google Scholar 

  14. Ohnaka, M.: Large earthquake generation cycles and accompanying seismic activity. In: The Physics of Rock Failure and Earthquakes, pp. 200–247. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  15. Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. CRC Press, New York (2015)

    Book  MATH  Google Scholar 

  16. Berman, M., Turner, R.: Approximating point process likelihoods with GLIM. Appl. Stat. 41(1), 31–38 (1992)

    Article  MATH  Google Scholar 

  17. Husain, A., Choiruddin, A.: Poisson and logistic regressions for inhomogeneous multivariate point processes: a case study in the Barro Colorado Island plot. In: Mohamed, A., Yap, B.W., Zain, J.M., Berry, M.W. (eds.) Soft Computing in Data Science 2021, CCIS, vol. 1489, pp. 301–311. Springer, Singapore (2021)

    Google Scholar 

  18. Baddeley, A., Coeurjolly, J.F., Rubak, E., Waagepetersen, R.P.: Logistic regression for spatial Gibbs point processes. Biometrika 101(2), 377–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hastie, T.: Ridge regularizaton: an essential concept in Data Science. arXiv preprint arXiv:2006.00371v1 (2020)

  20. Choiruddin, A., Coeurjolly, J.F., Letué, F.: Convex and non-convex regularization methods for spatial point processes intensity estimation. Electron. J. Stat. 12(1), 1210–1255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. The Ann. Appl. Stat. 1(2), 302–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jalilian, A., Guan, Y., Waagepetersen, R.P.: Decomposition of variance for spatial cox processes. Scand. J. Stat. 40(1), 119–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wirth, E.A., Sahakian, V.J., Wallace, L.M., Melnick, D.: The occurrence and hazards of great subduction zone earthquakes. Nat. Rev. Earth Environ. 3(2), 125–140 (2022)

    Article  Google Scholar 

  24. Choiruddin, A., Coeurjolly, J.F., Letue, F.: Adaptive lasso and Dantzig selector for spatial point processes intensity estimation. Bernoulli (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alissa Chintyana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chintyana, A., Choiruddin, A., Sutikno (2023). Cox Point Process with Ridge Regularization: A Better Approach for Statistical Modeling of Earthquake Occurrences. In: Yusoff, M., Hai, T., Kassim, M., Mohamed, A., Kita, E. (eds) Soft Computing in Data Science. SCDS 2023. Communications in Computer and Information Science, vol 1771. Springer, Singapore. https://doi.org/10.1007/978-981-99-0405-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0405-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0404-4

  • Online ISBN: 978-981-99-0405-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics