Skip to main content
Log in

Quantifying the Effect of Geological Factors on Distribution of Earthquake Occurrences by Inhomogeneous Cox Processes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Research on earthquake occurrences using a statistical methodology based on point processes has mainly focused on the data featuring earthquake catalogs which ignores the effect of environmental variables. In this paper, we introduce inhomogeneous versions of the Cox process models which are able to quantify the effect of geological factors such as subduction zone, fault, and volcano on the major earthquake distribution in Sulawesi and Maluku, Indonesia. Specifically, we compare Thomas, Cauchy, variance-gamma, and log-Gaussian Cox models and consider parametric intensity and pair correlation functions to enhance model interpretability. We perform model selection using the Akaike information criterion (AIC) and envelopes test. We conclude that the nearest distances to the subduction zone and volcano have a significant impact on the risk of earthquake occurrence in Sulawesi and Maluku. Furthermore, the Cauchy and variance-gamma cluster models fit well the major earthquake distribution in Sulawesi and Maluku.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aisah., Iriawan, N., & Choiruddin, A. (2020). On the earthquake modeling by using Bayesian mixture Poisson process. International Journal of Advanced Science and Technology, 29(7s), 3350–3358.

    Google Scholar 

  • Anwar, S., Stein, A., & van Genderen, J. L. (2012). Implementation of the marked Strauss point process model to the epicenters of earthquake aftershocks. Advances in geo-spatial information science. (pp. 125–140). Taylor & Francis.

    Google Scholar 

  • Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with R. CRC Press.

    Book  Google Scholar 

  • Baddeley, Y., Chang, A., Song, Y., & Turner, R. (2012). Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Statistics and Its Interface, 5(2), 221–236.

    Article  Google Scholar 

  • Båth, M., & Duda, S. J. (1979). Some aspects of global seismicity. Tectonophysics, 54(1–2), T1–T8.

    Article  Google Scholar 

  • Berman, M., & Turner, T. R. (1992). Approximating point process likelihoods with GLIM. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(1), 31–38.

    Google Scholar 

  • Bilek, S. L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468–1500.

    Article  Google Scholar 

  • Badan Meteorologi Klimatologi dan Geofisika. (2019). Data gempabumi. http://dataonline.bmkg.go.id/data_gempa_bumi. Accessed October 2019.

  • Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., et al. (2003). Crustal motion in Indonesia from global positioning system measurements. Journal of Geophysical Research: Solid Earth, 108(B8).

  • Choiruddin, A., Coeurjolly, J.-F., Letué, F., et al. (2018). Convex and non-convex regularization methods for spatial point processes intensity estimation. Electronic Journal of Statistics, 12(1), 1210–1255.

    Article  Google Scholar 

  • Choiruddin, A., Cuevas-Pacheco, F., Coeurjolly, J.-F., & Waagepetersen, R. P. (2020). Regularized estimation for highly multivariate log Gaussian Cox processes. Statistics and Computing, 30(3), 649–662.

    Article  Google Scholar 

  • Choiruddin, A., Coeurjolly, J.-F., & Waagepetersen, R.P. (2021). Information criteria for inhomogeneous spatial point processes. To appear in Australian and New Zealand Journal of Statistics.

  • Eggert, S., & Walter, T. R. (2009). Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance. Tectonophysics, 471(1–2), 14–26.

    Article  Google Scholar 

  • Ghorbani, M. (2013). Cauchy cluster process. Metrika, 76(5), 697–706.

    Article  Google Scholar 

  • Guan, Y. (2006). A composite likelihood approach in fitting spatial point process models. Journal of the American Statistical Association, 101(476), 1502–1512.

    Article  Google Scholar 

  • Hamilton, W.B. (1979). Tectonics of the Indonesian region, volume 1078. US Government Printing Office.

  • Jalilian, A., Guan, Y., & Waagepetersen, R. P. (2013). Decomposition of variance for spatial Cox processes. Scandinavian Journal of Statistics, 40(1), 119–137.

    Article  Google Scholar 

  • Liu, M., Li, H., Peng, Z., Ouyang, L., Ma, Y., Ma, J., et al. (2019). Spatial-temporal distribution of early aftershocks following the 2016 ms 6.4 Menyuan, Qinghai, China earthquake. Tectonophysics, 766, 469–479.

    Article  Google Scholar 

  • Luo, Y., & Liu, Z. (2019). Slow-slip recurrent pattern changes: Perturbation responding and possible scenarios of precursor toward a megathrust earthquake. Geochemistry, Geophysics, Geosystems, 20(2), 852–871.

    Article  Google Scholar 

  • Matsu’ura, R., & Karakama, I. (2005). A point-process analysis of the Matsushiro earthquake swarm sequence: The effect of water on earthquake occurrence. Pure and Applied Geophysics, 162, 1319–1345.

    Article  Google Scholar 

  • Møller, J., & Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. CRC Press.

    Book  Google Scholar 

  • Møller, J., & Waagepetersen, R. P. (2007). Modern statistics for spatial point processes. Scandinavian Journal of Statistics, 34(4), 643–684.

    Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1999). Seismicity analysis through point-process modeling: A review. Pure and Applied Geophysics, 155, 471–507.

    Article  Google Scholar 

  • Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Bandung, Indonesia: Badan Penelitian dan Pengembangan Kementrian Pekerjaan Umum dan Perumahan Rakyat. 978-602-5489-01-3.

  • Siino, M., Adelfio, G., Mateu, J., Chiodi, M., & D’alessandro, A. (2017). Spatial pattern analysis using hybrid models: An application to the Hellenic seismicity. Stochastic Environmental Research and Risk Assessment, 31(7), 1633–1648.

    Article  Google Scholar 

  • Siino, M., Adelfio, G., & Mateu, J. (2018). Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes. Stochastic Environmental Research and Risk Assessment, 32(12), 3525–3539.

    Article  Google Scholar 

  • Tanaka, U., Ogata, Y., & Stoyan, D. (2008). Parameter estimation and model selection for Neyman–Scott point processes. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(1), 43–57.

    Article  Google Scholar 

  • Türkyilmaz, K., van Lieshout, M. N. M., & Stein, A. (2013). Comparing the Hawkes and trigger process models for aftershock sequences following the 2005 Kashmir earthquake. Mathematical Geosciences, 45(2), 149–164.

    Article  Google Scholar 

  • Vere-Jones, D. (1970). Stochastic models for earthquake occurrence. Journal of the Royal Statistical Society: Series B (Methodological), 32(1), 1–45.

    Google Scholar 

  • Waagepetersen, R. P. (2007). An estimating function approach to inference for inhomogeneous Neyman–Scott processes. Biometrics, 63(1), 252–258.

    Article  Google Scholar 

  • Waagepetersen, R. P., & Guan, Y. (2009). Two-step estimation for inhomogeneous spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3), 685–702.

    Article  Google Scholar 

  • Youngman, B. D., & Economou, T. (2017). Generalised additive point process models for natural hazard occurrence. Environmetrics, 28(4), e2444.

    Article  Google Scholar 

  • Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458), 369–380.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Institut Teknologi Sepuluh Nopember Grant 848/PKS/ITS/2020. We thank the editor and the reviewer for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achmad Choiruddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choiruddin, A., Aisah, Trisnisa, F. et al. Quantifying the Effect of Geological Factors on Distribution of Earthquake Occurrences by Inhomogeneous Cox Processes. Pure Appl. Geophys. 178, 1579–1592 (2021). https://doi.org/10.1007/s00024-021-02713-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02713-2

Keywords

Navigation