Skip to main content

Recent Advances in Machine Learning for Electrochemical, Optical, and Gas Sensors

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

Machine learning is increasingly used in the analysis of distinct types of data for clinical diagnosis and monitoring the environment, particularly because of the large amounts of data generated in sensing and biosensing methods. In this chapter, we discuss the usage of machine learning for electrochemical sensors, with emphasis on colorimetric principles of detection

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faceli, K., Lorena, A. C., Gama, J., & de Carvalho, A. C. P. D. L. F. D. (2021). Inteligência artificial: Uma abordagem de aprendizado de màquina (2nd ed.). LTC. https://www.grupogen.com.br/inteligencia-artificial-uma-abordagem-de-aprendizado-de-maquina?event-category=beon&event-action=details&event-label=produto_ultimos

  2. Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer diagnosis using deep learning: A bibliographic review. Cancers (Basel), 11, 1235. https://doi.org/10.3390/cancers11091235

    Article  Google Scholar 

  3. Ribas, L. C., Riad, R., Jennane, R., & Bruno, O. M. (2022). A complex network based approach for knee Osteoarthritis detection: Data from the Osteoarthritis initiative. Biomedical Signal Processing and Control, 71, 103133. https://doi.org/10.1016/j.bspc.2021.103133

    Article  Google Scholar 

  4. Rodrigues, V. C., Soares, J. C., Soares, A. C., Braz, D. C., Melendez, M. E., Ribas, L. C., Scabini, L. F. S., Bruno, O. M., Carvalho, A. L., Reis, R. M., Sanfelice, R. C., & Oliveira, O. N. (2021). Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta, 222, 121444. https://doi.org/10.1016/j.talanta.2020.121444

    Article  Google Scholar 

  5. Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review. IEEE Access, 7, 19143–19165. https://doi.org/10.1109/ACCESS.2019.2896880

    Article  Google Scholar 

  6. Zhao, Z., Zheng, P., Xu, S., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212–3232. https://doi.org/10.1109/TNNLS.2018.2876865

    Article  Google Scholar 

  7. Song, L., Gong, D., Li, Z., Liu, C., & Liu, W. (2019). Occlusion robust face recognition based on mask learning with pairwise differential siamese network. In 2019 IEEE/CVF International Conference on Computer Vision (pp. 773–782). IEEE. https://doi.org/10.1109/ICCV.2019.00086

  8. Soares, J. C., Soares, A. C., Rodrigues, V. C., Oiticica, P. R. A., Raymundo-Pereira, P. A., Bott-Neto, J. L., Buscaglia, L. A., de Castro, L. D. C., Ribas, L. C., Scabini, L., & Brazaca, L. C. (2021). Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques. Materials Chemistry Frontiers, 5, 5506–5506. https://doi.org/10.1039/D1QM90058G

  9. Baldassarre, A., Mucci, N., Lecca, L. I., Tomasini, E., Parcias-do-Rosario, M. J., Pereira, C. T., Arcangeli, G., & Oliveira, P. A. B. (2020). Biosensors in occupational safety and health management: A narrative review. International Journal of Environmental Research Public Health, 17, 2461. https://doi.org/10.3390/ijerph17072461

  10. Oliveira, O. N., Iost, R. M., Siqueira, J. R., Crespilho, F. N., & Caseli, L. (2014). Nanomaterials for diagnosis: Challenges and applications in smart devices based on molecular recognition. ACS Applied Materials and Interfaces, 6, 14745–14766. https://doi.org/10.1021/am5015056

    Article  Google Scholar 

  11. Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39, 1747–1763. https://doi.org/10.1039/b714449k

    Article  Google Scholar 

  12. Wang, J. (2006). Electrochemical sensors. In Analytical electrochemistry (pp. 201–243). Wiley. https://doi.org/10.1002/0471790303.ch6

  13. Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21, 1109. https://doi.org/10.3390/s21041109

    Article  ADS  Google Scholar 

  14. Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 16, 121–131. https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  Google Scholar 

  15. Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors—Sensor principles and architectures. Sensors, 8, 1400–1458. https://doi.org/10.3390/s80314000

  16. Kimmel, D. W., LeBlanc, G., Meschievitz, M. E., & Cliffel, D. E. (2012). Electrochemical sensors and biosensors. Analytical Chemistry, 84, 685–707. https://doi.org/10.1021/ac202878q

    Article  Google Scholar 

  17. Puthongkham, P., Wirojsaengthong, S., & Suea-Ngam, A. (2021). Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry. The Analyst, 146, 6351–6364. https://doi.org/10.1039/D1AN01148K

    Article  ADS  Google Scholar 

  18. Ferguson, A. L. (2018). ACS central science virtual issue on machine learning. ACS Central Science, 4, 938–941. https://doi.org/10.1021/acscentsci.8b00528

    Article  Google Scholar 

  19. Brown, K. A., Brittman, S., Maccaferri, N., Jariwala, D., & Celano, U. (2020). Machine learning in nanoscience: Big data at small scales. Nano Letters, 20, 2–10. https://doi.org/10.1021/acs.nanolett.9b04090

    Article  ADS  Google Scholar 

  20. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x

    Article  Google Scholar 

  21. Bond, A. M., Zhang, J., Gundry, L., & Kennedy, G. F. (2022). Opportunities and challenges in applying machine learning to voltammetric mechanistic studies. Current Opinion in Electrochemistry, 34, 101009. https://doi.org/10.1016/j.coelec.2022.101009

    Article  Google Scholar 

  22. DePalma, R. A., & Perone, S. P. (1979). Characterization of heterogeneous kinetic parameters from voltammetric data by computerized pattern recognition. Analytical Chemistry, 51, 829–832. https://doi.org/10.1021/ac50043a013

    Article  Google Scholar 

  23. Meuwly, M. (2021). Machine learning for chemical reactions. Chemical Reviews, 121, 10218–10239. https://doi.org/10.1021/acs.chemrev.1c00033

    Article  Google Scholar 

  24. Sapozhnikova, E. P., Bogdan, M., Speiser, B., Rosenstiel, W. (2006). EChem++–An object-oriented problem solving environment for electrochemistry. 3. Classification of voltammetric signals by the Fuzzy ARTMAP neural network with respect to reaction mechanisms. Journal of Electroanalytical Chemistry, 588, 15–26. https://doi.org/10.1016/j.jelechem.2005.11.032

  25. Hoar, B. B., Zhang, W., Xu, S., Deeba, R., Costentin, C., Gu, Q., & Liu, C. (2022). Electrochemical mechanistic analysis from cyclic voltammograms based on deep learning. ACS Measurement Science Au. https://doi.org/10.1021/acsmeasuresciau.2c00045

    Article  Google Scholar 

  26. Semenova, D., Zubov, A., Silina, Y. E., Micheli, L., Koch, M., Fernandes, A. C., & Gernaey, K. V. (2018). Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization. Sensors and Actuators B Chemical, 259, 945–955. https://doi.org/10.1016/j.snb.2017.12.088

    Article  Google Scholar 

  27. Chen, H., Kätelhön, E., Le, H., & Compton, R. G. (2021). Use of artificial intelligence in electrode reaction mechanism studies: Predicting voltammograms and analyzing the dissociative CE reaction at a hemispherical electrode. Analytical Chemistry, 93, 13360–13372. https://doi.org/10.1021/acs.analchem.1c03154

    Article  Google Scholar 

  28. Toyao, T., Maeno, Z., Takakusagi, S., Kamachi, T., Takigawa, I., & Shimizu, K. (2020). Machine learning for catalysis informatics: Recent applications and prospects. ACS Catalysis, 10, 2260–2297. https://doi.org/10.1021/acscatal.9b04186

    Article  Google Scholar 

  29. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing Biosensors with Machine Learning. ACS Sensors, 5, 3346–3364. https://doi.org/10.1021/acssensors.0c01424

    Article  Google Scholar 

  30. Sheng, Y., Qian, W., Huang, J., Wu, B., Yang, J., Xue, T., Ge, Y., & Wen, Y. (2019). Electrochemical detection combined with machine learning for intelligent sensing of maleic hydrazide by using carboxylated PEDOT modified with copper nanoparticles. Microchimica Acta, 186, 543. https://doi.org/10.1007/s00604-019-3652-x

    Article  Google Scholar 

  31. Guo, Z., Tian, R., Xu, W., Yip, D., Radyk, M., Santos, F. B., Yip, A., Chen, T., & Tang, X. S. (2022). Highly accurate heart failure classification using carbon nanotube thin film biosensors and machine learning assisted data analysis. Biosensors and Bioelectronics X, 12, 100187. https://doi.org/10.1016/j.biosx.2022.100187

    Article  Google Scholar 

  32. Du, L., Yan, Y., Li, T., Liu, H., Li, N., & Wang, X. (2022). Machine learning enables quantification of multiple toxicants with microbial electrochemical sensors. ACS ES&T Engineering, 2, 92–100. https://doi.org/10.1021/acsestengg.1c00287

    Article  Google Scholar 

  33. Zhou, Z., Wang, L., Wang, J., Liu, C., Xu, T., & Zhang, X. (2022). Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.2c17593

    Article  Google Scholar 

  34. Xu, L., He, J., Duan, S., Wu, X., & Wang, Q. (2016). Comparison of machine learning algorithms for concentration detection and prediction of formaldehyde based on electronic nose. Sensor Review, 36, 207–216. https://doi.org/10.1108/SR-07-2015-0104

    Article  Google Scholar 

  35. Yang, Z., Miao, N., Zhang, X., Li, Q., Wang, Z., Li, C., Sun, X., & Lan, Y. (2021). Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea. Food Control, 121, 107608. https://doi.org/10.1016/j.foodcont.2020.107608

    Article  Google Scholar 

  36. Dean, S. N., Shriver-Lake, L. C., Stenger, D. A., Erickson, J. S., Golden, J. P., & Trammell, S. A. (2019). Machine learning techniques for chemical identification using cyclic square wave voltammetry. Sensors, 19, 2392. https://doi.org/10.3390/s19102392

    Article  ADS  Google Scholar 

  37. Daliri, M. R. (2015). Combining extreme learning machines using support vector machines for breast tissue classification. Computer Methods in Biomechanics and Biomedical Engineering, 18, 185–191. https://doi.org/10.1080/10255842.2013.789100

    Article  Google Scholar 

  38. Durante, G., Becari, W., Lima, F. A. S., & Peres, H. E. M. (2016). Electrical impedance sensor for real-time detection of bovine milk adulteration. IEEE Sensors Journal, 16, 861–865. https://doi.org/10.1109/JSEN.2015.2494624

    Article  ADS  Google Scholar 

  39. Islam, M., Wahid, K., & Dinh, A. (2018). Assessment of ripening degree of avocado by electrical impedance spectroscopy and support vector machine. Journal of Food Quality, 2018, 1–9. https://doi.org/10.1155/2018/4706147

    Article  Google Scholar 

  40. Murphy, E. K., Mahara, A., Khan, S., Hyams, E. S., Schned, A. R., Pettus, J., & Halter, R. J. (2017). Comparative study of separation between ex vivo prostatic malignant and benign tissue using electrical impedance spectroscopy and electrical impedance tomography. Physiological Measurement, 38, 1242–1261. https://doi.org/10.1088/1361-6579/aa660e

    Article  ADS  Google Scholar 

  41. Leon-Medina, J. X., Anaya, M., Pozo, F., & Tibaduiza, D. (2020). Nonlinear feature extraction through manifold learning in an electronic tongue classification task. Sensors, 20, 4834. https://doi.org/10.3390/s20174834

    Article  ADS  Google Scholar 

  42. Schackart, K. E., & Yoon, J. (2021). Machine learning enhances the performance of bioreceptor-free biosensors. Sensors, 21, 5519. https://doi.org/10.3390/s21165519

    Article  ADS  Google Scholar 

  43. Gunda, N. S. K., Gautam, S. H., & Mitra, S. K. (2019). Editors’ choice—Artificial intelligence based mobile application for water quality monitoring. Journal of the Electrochemical Society, 166, B3031–B3035. https://doi.org/10.1149/2.0081909jes

    Article  Google Scholar 

  44. Mercan, Ö. B., Kılıç, V., & Şen, M. (2021). Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled μPAD. Sensors Actuators B Chemical, 329, 129037. https://doi.org/10.1016/j.snb.2020.129037

    Article  Google Scholar 

  45. Xu, Z., Wang, K., Zhang, M., Wang, T., Du, X., Gao, Z., Hu, S., Ren, X., & Feng, H. (2022). Chemical machine learning assisted dual-emission fluorescence/colorimetric sensor array detection of multiple antibiotics under stepwise prediction strategy. Sensors Actuators B. Chemical, 359, 131590. https://doi.org/10.1016/j.snb.2022.131590

    Article  Google Scholar 

  46. Zhou, Y., Yuan, Y., Wu, Y., Li, L., Jameel, A., Xing, X., & Zhang, C. (2022). Encoding genetic circuits with DNA barcodes paves the way for machine learning-assisted metabolite biosensor response curve pro fi ling in yeast. ACS Synthetic Biology, 11, 977–989. https://doi.org/10.1021/acssynbio.1c00595

    Article  Google Scholar 

  47. Khanal, B., Pokhrel, P., Khanal, B., & Giri, B. (2021). Machine-learning-assisted analysis of colorimetric assays on paper analytical devices. ACS Omega, 6, 33837–33845. https://doi.org/10.1021/acsomega.1c05086

    Article  Google Scholar 

  48. Revignas, D., & Amendola, V. (2022). Artificial neural networks applied to colorimetric nanosensors: An undergraduate experience tailorable from gold nanoparticles synthesis to optical spectroscopy and machine learning. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.1c01288

    Article  Google Scholar 

  49. Hyeon, D., Kim, Y., Hun, H., Lee, B., Suh, S., Hyuk, J., & Heon, J. (2022). Automatic quantification of living cells via a non-invasive achromatic colorimetric sensor through machine learning-assisted image analysis using a smartphone. Chemical Engineering Journal, 450, 138281. https://doi.org/10.1016/j.cej.2022.138281

    Article  Google Scholar 

  50. Pohanka, M. (2020). Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. Reviews in Analytical Chemistry, 39, 20–30. https://doi.org/10.1515/revac-2020-0111

    Article  Google Scholar 

  51. Sajed, S., Kolahdouz, M., Sadeghi, M. A., & Razavi, S. F. (2020). High-performance estimation of lead ion concentration using smartphone-based colorimetric analysis and a machine learning approach. ACS Omega, 5, 27675–27684. https://doi.org/10.1021/acsomega.0c04255

    Article  Google Scholar 

  52. Helfer, G. A., Magnus, V. S., Böck, F. C., Teichmann, A., Ferrão, M. F., da Costa, A. B. (2017). PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices. Journal of the Brazilian Chemical Society, 28, 328–335. https://doi.org/10.5935/0103-5053.20160182

  53. Leng, Y., Cheng, J., Liu, C., Wang, D., Lu, Z., Ma, C., Zhang, M., Dong, Y., Xing, X., Yao, L., & Chen, Z. (2021). A rapid reduction of Au ( I → 0) strategy for the colorimetric detection and discrimination of proteins. Microchimica Acta, 188, 1–9. https://doi.org/10.1007/s00604-021-04906-x

    Article  ADS  Google Scholar 

  54. Liu, T., Jiang, H., & Chen, Q. (2022). Input features and parameters optimization improved the prediction accuracy of support vector regression models based on colorimetric sensor data for detection of aflatoxin B1 in corn. Microchemical Journal, 178, 107407. https://doi.org/10.1016/j.microc.2022.107407

    Article  Google Scholar 

  55. Chary, R. V. R. (2012). Feature extraction methods for color image similarity. Advanced Computing an International Journal, 3, 147–157. https://doi.org/10.5121/acij.2012.3215

    Article  ADS  Google Scholar 

  56. Solmaz, M. E., Mutlu, A. Y., Alankus, G., Kılıc, V., Bayram, A., & Horzum, N. (2018). Chemical quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sensors Actuators B. Chemical, 255, 1967–1973. https://doi.org/10.1016/j.snb.2017.08.220

    Article  Google Scholar 

  57. Ballard, Z., Brown, C., Madni, A. M., & Ozcan, A. (2021). Machine learning and computation-enabled intelligent sensor design. Nature Machine Intelligence, 3, 556–565. https://doi.org/10.1038/s42256-021-00360-9

    Article  Google Scholar 

  58. Kim, H., Awofeso, O., Choi, S., Jung, Y., & Bae, E. (2017). Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms. Applied Optics, 56, 84–92. https://doi.org/10.1364/AO.56.000084

    Article  ADS  Google Scholar 

  59. Vapnik, V. (1998). The support vector method of function estimation BT—Nonlinear modeling: Advanced black-box techniques. In J. A. K. Suykens, & J. Vandewalle (Eds.), Nonlinear model (pp. 55–85). Springer. https://doi.org/10.1007/978-1-4615-5703-6_3

  60. Hu, Z., Fang, W., Gou, T., Wu, W., & Hu, J. (2019). Analytical Methods A novel method based on a Mask R-CNN model for processing dPCR images. Analytical Methods, 11, 3410–3418. https://doi.org/10.1039/c9ay01005j

    Article  Google Scholar 

  61. United State Environmental Protection Agency. (2018). Sources of Greenhouse gas emissions | greenhouse gas (GHG) emissions | US EPA. Greenhouse Gas Emissions.

    Google Scholar 

  62. Kumar, S., Choudhury, S., & Pandey, V. (2019). A study on the horrendous industrial mass disaster at union carbide plant of Bhopal in light of ethical dimension. Indian Journal of Public Health Research and Development. https://doi.org/10.5958/0976-5506.2019.01251.8

    Article  Google Scholar 

  63. Yandrapu, V. P., & Kanidarapu, N. R. (2022). Energy, economic, environment assessment and process safety of methylchloride plant using Aspen HYSYS simulation model. Digital Chemical Engineering. https://doi.org/10.1016/j.dche.2022.100019

    Article  Google Scholar 

  64. Zhang, H., & Srinivasan, R. (2020). A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability. https://doi.org/10.3390/su12219045

    Article  Google Scholar 

  65. Wienemann, E., & Wartmann, A. (2021). Alcohol prevention in the workplace: current workplace concepts for addiction prevention and addiction assistance programmes. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz. https://doi.org/10.1007/s00103-021-03337-6

    Article  Google Scholar 

  66. Kim, S. J., Koh, H. J., Ren, C. E., Kwon, O., Maleski, K., Cho, S. Y., Anasori, B., Kim, C. K., Choi, Y. K., Kim, J., Gogotsi, Y., & Jung, H. T. (2018). Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. https://doi.org/10.1021/acsnano.7b07460

    Article  Google Scholar 

  67. Shin, W., Hong, S., Jung, G., Jeong, Y., Park, J., Kim, D., Jang, D., Park, B. G., & Lee, J. H. (2021). Improved signal-to-noise-ratio of FET-type gas sensors using body bias control and embedded micro-heater. Sensors Actuators B Chemical. https://doi.org/10.1016/j.snb.2020.129166

    Article  Google Scholar 

  68. Srivastava, S. (2021). Effect on neural pattern classifier for intelligent gas sensor by increasing number of hidden layer. International Journal of Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2021.37583

    Article  Google Scholar 

  69. Xiong, L., & Compton, R. G. (2014). Amperometric gas detection: A review. International Journal of Electrochemical Science.

    Google Scholar 

  70. Song, Z., Ye, W., Chen, Z., Chen, Z., Li, M., Tang, W., Wang, C., Wan, Z., Poddar, S., Wen, X., Pan, X., Lin, Y., Zhou, Q., & Fan, Z. (2021). Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano. https://doi.org/10.1021/acsnano.1c01256

    Article  Google Scholar 

  71. Kato, Y., & Mukai, T. (2007). A real-time intelligent gas sensor system using a nonlinear dynamic response. Sensors Actuators B Chemical. https://doi.org/10.1016/j.snb.2006.03.021

    Article  Google Scholar 

  72. Shafii, N. Z., Saudi, A. S. M., Pang, J. C., Abu, I. F., Sapawe, N., Kamarudin, M. K. A., & Saudi, H. F. M. (2019). Application of chemometrics techniques to solve environmental issues in Malaysia. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02534

    Article  Google Scholar 

  73. Aleixandre-Tudo, J. L., Castello-, L., Aleixandre, J. L., & Aleixandre-, R. (2022). Chemometrics in food science and technology: A bibliometric study. Chemometrics and Intelligent Laboratory Systems. https://doi.org/10.1016/j.chemolab.2022.104514

  74. Morita, S. (2020). Chemometrics and related fields in python. Analytical Sciences. https://doi.org/10.2116/analsci.19R006

    Article  Google Scholar 

  75. Roy, M., & Yadav, B. K. (2022). Electronic nose for detection of food adulteration: a review. Journal of Food Science and Technololgy. https://doi.org/10.1007/s13197-021-05057-w

    Article  Google Scholar 

  76. Oleneva, E., Kuchmenko, T., Drozdova, E., Legin, A., & Kirsanov, D. (2020). Identification of plastic toys contaminated with volatile organic compounds using QCM gas sensor array. Talanta. https://doi.org/10.1016/j.talanta.2019.120701

    Article  Google Scholar 

  77. Thomas, S., Joshi, N., & Vijay, T. (Eds.). Functional nanomaterials advances in gas sensing technologies. Springer Singapore. https://doi.org/10.1007/978-981-15-4810-9

  78. Materon, E. M., Ibáñez-Redín, G., Joshi, N., Gonçalves, D., Oliveira, O. N., & Faria, R. C. (2020). Analytical detection of pesticides, pollutants, and pharmaceutical waste in the environment. https://doi.org/10.1007/978-3-030-38101-1_3

  79. Materón, E. M., Lima, R. S., Joshi, N., Shimizu, F. M., & Oliveira, O. N. (2019). Chapter 13—Graphene-containing microfluidic and chip-based sensor devices for biomolecules. In A. Pandikumar, P.B.T.-G.-B.E.S. for B. Rameshkumar (Eds.), Micro and nano technologies (pp. 321–336). Elsevier. https://doi.org/10.1016/B978-0-12-815394-9.00013-3

  80. Joshi, N., Pransu, G., & Adam Conte-Junior, C. (2022). Critical review and recent advances of 2D materials-based gas sensors for food spoilage detection. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2022.2078950

  81. Joshi, N., Braunger, M. L., Shimizu, F. M., Riul, A., & Oliveira, O. N. (2021). Insights into nano-heterostructured materials for gas sensing: A review. Multifunctional Materials, 4, 032002. https://doi.org/10.1088/2399-7532/ac1732

    Article  ADS  Google Scholar 

  82. Joshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira, O. N., & Lin, L. (2018). A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides, Microchimica Acta, 185.

    Google Scholar 

  83. Kang, M., Cho, I., Park, J., Jeong, J., Lee, K., Lee, B., Del Orbe Henriquez, D., Yoon, K., & Park, I. (2022). High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sensors. https://doi.org/10.1021/acssensors.1c01204

  84. Devabharathi, N., Parasuraman, R., Umarji, A. M., & Dasgupta, S. (2021). Ultra-high response ethanol sensors from fully-printed co-continuous and mesoporous tin oxide thin films. Journal of Alloys and Compdounds. https://doi.org/10.1016/j.jallcom.2021.158815

    Article  Google Scholar 

  85. Potyrailo, R. A., Brewer, J., Cheng, B., Carpenter, M. A., Houlihan, N., & Kolmakov, A. (2020). Bio-inspired gas sensing: Boosting performance with sensor optimization guided by “machine learning.” Faraday Discussions. https://doi.org/10.1039/d0fd00035c

    Article  Google Scholar 

  86. Reynolds, M., Duarte, L. M., Coltro, W. K. T., Silva, M. F., Gomez, F. J. V., & Garcia, C. D. (2020). Laser-engraved ammonia sensor integrating a natural deep eutectic solvent. Microchemical Journal. https://doi.org/10.1016/j.microc.2020.105067

    Article  Google Scholar 

  87. Khorramifar, A., Rasekh, M., Karami, H., Malaga-Toboła, U., & Gancarz, M. (2021). A machine learning method for classification and identification of potato cultivars based on the reaction of MOS type sensor-array. Sensors. https://doi.org/10.3390/s21175836

Download references

Acknowledgments

 This work was supported by CNPq (402816/2020-0,102127/2022-0,115857/2022-2), CAPES, INEO, and FAPESP (2018/22214-6, 2021/08387-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa M. Materón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Materón, E.M. et al. (2023). Recent Advances in Machine Learning for Electrochemical, Optical, and Gas Sensors. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_6

Download citation

Publish with us

Policies and ethics