Skip to main content

Updated Lagrangian Curvilinear Beam Element for 2D Large Displacement Analysis

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Numerical Modelling in Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 134 Accesses

Abstract

This paper presents a 2D curvilinear beam finite element model focusing the interest on its use for non-linear analysis caused by very large displacements, addressed with the Update Lagrangian strategy. The method allows using very long curvilinear beams even when high geometric nonlinearities occur. This is due inasmuch the proposed formulation does not require any pre-set shape function that would inevitably force to use a huge number of elements to achieve reliability. The lack of shape-functions is overcome using the integration of the compatibility equations, that provide the whole internal displacement field from the only knowledge of the element nodal degree of freedom. Section-slices subdivision allows to sum, not to assemble, the flexibility contribute of each slice and consequently to build up the end-to-end tangent stiffness matrix of a generic curvilinear beam element. Moreover, the flexibility feature of every slice can be deduced analytically once and for all. To validate the proposed element some comparisons are carried out with analytical and numerical solutions obtained with Runge–Kutta integration method or cubic isoparametric finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kadziela B, Manka M, Uhl T, Toso A (2016) Validation and optimization of the leaf spring multibody numerical model. Arch Appl Mech 85:1899–1914

    Article  Google Scholar 

  2. Grade J., Hal Jerman T.W.: A Large-Deflection Electrostatic Actuator for Optical Switching Applications. 2000 Solid-State, Actuators, and Microsystems Workshop (2000).

    Google Scholar 

  3. Wagner T, Vella D (2013) Switch on, switch off: stiction in nano electro-mechanical switches. Nanotechnology 24:275501

    Article  Google Scholar 

  4. Howell L (2001) Compliant mechanisms. Wiley

    Google Scholar 

  5. Frisch-Fay R (1962) Flexible bars. Butterworths, London

    MATH  Google Scholar 

  6. De Bona F, Zelenika S (1997) A generalized elastica-type approach to the analysis of large displacements of spring-strips. Proc Inst Mech Eng Part C- J Mech Eng Sci 211(7):509–517

    Article  Google Scholar 

  7. Batista M (2014) Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions. Int J Solids Struct 51(13):2308–2326

    Article  Google Scholar 

  8. Mingari Scarpello G, Ritelli D (2011) Exact solutions of nonlinear equation of rod deflections involving the Lauricella hypergeometric functions. Int J Math Math Sci, Hindawi, 1–22

    Google Scholar 

  9. Iandiorio C, Salvini P (2019) An analytical solution for large displacements of end-loaded beams. In: Proceedings of the 1st international conference on numerical modelling in engineering, vol 2, pp 320–338

    Google Scholar 

  10. Iandiorio C, Salvini P (2020) Large displacements of slender beams in plane: analytical solution by means of a new hypergeometric function. Int J Solids Struct 185–186:467–484

    Article  Google Scholar 

  11. Barbieri E (2020) Analytical solution of the cantilevered elastica subjected to a normal uniformly distributed follower load. Int J Solids Struct 202:486–494

    Article  Google Scholar 

  12. Rohde F (1953) Large deflections of a cantilever beam with uniformly distributed load. Quart Appl Math 11:337–338

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Deppo DA, Schmidt R (1971) Analysis of nonlinear deflections of fibers. Text Res J 41(11):911–915

    Article  Google Scholar 

  14. Wang CY (1986) A critical review of the heavy elastica. Int J Mech Sci 28(8):549–559

    Article  Google Scholar 

  15. Iandiorio C, Salvini P (2020) Heavy Elastica soil-supported with lifting load and bending moment applied to an end: a new analytical approach for very large displacements and experimental validation. Int J Solids Struct 206:153–169

    Article  Google Scholar 

  16. Iandiorio C, Salvini P (2022) Inflectional heavy elastica with unilateral contact constraint: analytical solution through the curvilinear abscissa mapping approximation. Int J Solids Struct 234–235:111258

    Article  Google Scholar 

  17. Marotta E, Iandiorio C, Salvini P (2021) Experimental setup for the evaluation of large displacements in the inflected beams sustained to ground. In: IOP conference series: materials science and engineering, vol 1038

    Google Scholar 

  18. Banerjee A, Bhattacharya B, Mallik AK (2008) Large deflection of cantilever beams with geometric nom-linearity: analytical and numerical approaches. Int J Non Linear Mech 43(5):366–376

    Article  MATH  Google Scholar 

  19. Sitar M, Kosel F, Brojan M (2014) A simple method for determining large deflection states of arbitrarily curved planar elastica. Arch Appl Mech 84:263–275

    Article  MATH  Google Scholar 

  20. Tari H (2013) On the parametric large deflection study of euler-bernoulli cantilever beams subjected to combined tip point loading. Int J Non-Linear Mech 49:90–99

    Article  Google Scholar 

  21. Masjedi PK, Weaver PM (2022) Analytical solution for arbitrary large deflection of geometrically exact beams using the homotopy analysis method. Appl Math Model 103:516–542

    Article  MathSciNet  Google Scholar 

  22. Simo JC, Vu-Quoc L (1986) On the dynamics of fexible beams under large overall motions-Te plane case: part I. J Appl Mech 53(4):849–854

    Article  MATH  Google Scholar 

  23. Nanakorn P, Vu LN (2006) A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation. Finite Elem Anal Des 42:1240–1247

    Article  Google Scholar 

  24. Beheshti A (2016) Large deformation analysis of strain-gradient elastic beams. Comput Struct 177:162–175

    Article  Google Scholar 

  25. Vo D, Nanakorn P (2020) A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of planar curved beams. Acta Mech 231:2827–2847

    Article  MathSciNet  MATH  Google Scholar 

  26. Bathe KJ, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986

    Google Scholar 

  27. Yang YB, Leu LJ (1991) Force recovery procedures in nonlinear analysis. Comput Struct 41(6):1255–1261

    Article  MATH  Google Scholar 

  28. Yang YB, Kuo SR, Wu YS (2002) Incrementally small deformation theory for nonlinear analysis of structural frames. Eng Struct 24(6):783–798

    Article  Google Scholar 

  29. Hosseini Kordkheili SA, Bahai H, Mirtaheri M (2011) An updated Lagrangian finite element formulation for large displacement dynamic analysis of three-dimensional flexible riser structures. Ocean Eng 38(5–6):793–803

    Article  Google Scholar 

  30. Crisfield MA (1991) Non-linear finite element analysis of solids and structures: non-linear finite elements analysis, vol 1. Wiley

    Google Scholar 

  31. Felippa CA, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2335

    Google Scholar 

  32. Urthaler Y, Reddy JN (2005) A corotational finite element formulation for the analysis of planar beams. Int J Numer Methods Biomed Eng 21(10)

    Google Scholar 

  33. Battini J (2008) Large rotations and nodal moments in corotational elements. CMES-Comput Model Eng Sci 33(1):1–16

    MathSciNet  MATH  Google Scholar 

  34. Nguyen DK (2013) A Timoshenko beam element for large displacement analysis of planar beams and frames. Int J Struct Stabil Dyn 12(06)

    Google Scholar 

  35. Elkaranshawy HA, Elerian AAH, Hussien WI (2018) A corotational formulation based on Hamilton’s principle for geometrically nonlinear thin and thick planar beams and frames. In: Mathematical problems in engineering, Hindawi, pp 1–22

    Google Scholar 

  36. Tang YQ, Du EF, Wang JQ, Qi JN (2020) A co-rotational curved beam element for geometrically nonlinear analysis of framed structures. Structures 27:1202–1208

    Article  Google Scholar 

  37. Zienkiewicz OC, Taylor RL (2000) The finite element method, solid mechanics, vol 2. Wiley

    Google Scholar 

  38. Bathe KJ (1997) Finite element procedures. Prentice Hall, New Jearsey

    MATH  Google Scholar 

  39. Marotta E, Massimi L, Salvini P (2020) Modelling of structures made of filiform beams: development of a curved finite element for wires. Finite Elem Anal Des 170:103349

    Article  MathSciNet  Google Scholar 

  40. Ray D (2015) Computation of nonlinear structures: extremely large elements for frames. Wiley, Plates and Shells

    Book  Google Scholar 

  41. Radenković G, Borković A (2018) Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam. Comput Methods Appl Mech Eng 341:360–396

    Article  MathSciNet  MATH  Google Scholar 

  42. Radenković G, Borković A (2020) On the analytical approach to the linear analysis of an arbitrarily curved spatial Bernoulli–Euler beam. Appl Math Model 77(Part 2):1603–1624

    Google Scholar 

  43. Molins C., Roca P., Barbat A.H.: Flexibility-based linear dynamic analysis of complex structures with curved-3D members. Earthquake Engineering and Structural Dynamics, 27(7) (1998).

    Google Scholar 

  44. Molari L, Ubertini F (2006) A flexibility-based finite element for linear analysis of arbitrarily curved arches. Numer Methods Eng 65(8) (2006).

    Google Scholar 

  45. Jafari M, Mahjoob MJ (2010) An exact three-dimensional beam element with nonuniform cross section. J Appl Mech 77(6):061009

    Article  Google Scholar 

  46. Iandiorio C, Salvini P, Pre-integrated beam finite element based on state diagrams with elastic perfectly-plastic flow. (Awaiting Publication)

    Google Scholar 

  47. Iandiorio C, Salvini P (2022) An engineering theory of thick curved beams loaded in-plane and out-of-plane: 3D stress analysis. Eur J Mech A Solids 92:104484

    Article  MathSciNet  MATH  Google Scholar 

  48. de Saint-Venant B (1861) Note of conditions of compatibility. L’Institut 28:294–295

    Google Scholar 

  49. Todhunter I (1889) The elastical researches of Barré de Saint-Venant. Cambridge University Press, London

    Google Scholar 

  50. Beltrami E (1886) Sull’interpretazione meccanica delle formule di Maxwell. Rendiconti del Circolo Matematico di Palermo 3

    Google Scholar 

  51. Volterra V (1905) Sulle distorsioni generate de tagli uniformi. Rendiconti del Circolo Matematico di Palermo 5(14):329–342

    MATH  Google Scholar 

  52. Volterra V (1905) Sulle distorsioni dei solidi elastici più volte connessi. Rendiconti del Circolo Matematico di Palermo 5(14):351–356. Rendiconti del Circolo Matematico di Palermo 5(14):431–438 (1905)

    Google Scholar 

  53. Volterra V, Sulle distorsioni dei corpi elastici simmetrici

    Google Scholar 

  54. Volterra V (1907) Sur l’équilibre des corps élastiques multiplement connexes. Annales Scientifiques de l’Ecole Normale Supérieure, Paris 24(3):401–518

    Article  MATH  Google Scholar 

  55. Cesàro E (1906) Sulle formole del Volterra fondamentali nella teoria delle distorsioni elastiche. Il Nuovo Cimento 12(1):143–154

    Article  MATH  Google Scholar 

  56. Barber JR (2004) Elasticity, 2 edn. Kluwer Academic Publishers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Iandiorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iandiorio, C., Salvini, P. (2023). Updated Lagrangian Curvilinear Beam Element for 2D Large Displacement Analysis. In: Abdel Wahab, M. (eds) Proceedings of the 5th International Conference on Numerical Modelling in Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-0373-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0373-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0372-6

  • Online ISBN: 978-981-99-0373-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics