Skip to main content

Pseudotyped Viruses

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COVID-19 :

Coronavirus disease-19

Env:

Envelope protein

EV 71:

Enterovirus 71

FIV:

Feline immunodeficiency virus

G:

Glycoprotein

hCMV:

Human cytomegalovirus

HDV:

Hepatitis delta virus

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

IRES:

Internal ribosomal entry site

L:

RNA-dependent RNA polymerase

L1:

Major capsid protein

L2:

Minor capsid protein

LTR:

Long terminal repeats

M:

Matrix protein

MHV:

Mouse hepatitis virus

MLV:

Murine leukemia virus

N:

Nucleoprotein

P:

Phosphoprotein

Pol:

Polymerase

RCR:

Replication-competent retrovirus

S:

Spike protein

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SEAP:

Secretory alkaline phosphatase

SIV:

Simian immunodeficiency virus

VLP:

Virus like particle

VSV:

Vesicular stomatitis virus

References

  1. Bewley, K.R., et al.: Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat. Protoc. 16, 3114–3140 (2021). https://doi.org/10.1038/s41596-021-00536-y

    Article  CAS  PubMed  Google Scholar 

  2. Nie, J., et al.: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect. 9, 680–686 (2020). https://doi.org/10.1080/22221751.2020.1743767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nie, J., et al.: Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 15, 3699–3715 (2020). https://doi.org/10.1038/s41596-020-0394-5

    Article  CAS  PubMed  Google Scholar 

  4. Li, Q., Liu, Q., Huang, W., Li, X., Wang, Y.: Current status on the development of pseudoviruses for enveloped viruses. Rev. Med. Virol. 28 (2018). https://doi.org/10.1002/rmv.1963

  5. Sanders, D.A.: No false start for novel pseudotyped vectors. Curr. Opin. Biotechnol. 13, 437–442 (2002). https://doi.org/10.1016/s0958-1669(02)00374-9

    Article  CAS  PubMed  Google Scholar 

  6. Dull, T., et al.: A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998). https://doi.org/10.1128/JVI.72.11.8463-8471.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Negre, D., et al.: Lentiviral vectors derived from simian immunodeficiency virus. Curr. Top. Microbiol. Immunol. 261, 53–74 (2002). https://doi.org/10.1007/978-3-642-56114-6_3

    Article  CAS  PubMed  Google Scholar 

  8. Poeschla, E., et al.: Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J. Virol. 72, 6527–6536 (1998). https://doi.org/10.1128/JVI.72.8.6527-6536.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma, A., et al.: BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc. Natl. Acad. Sci. U. S. A. 110, 12036–12041 (2013). https://doi.org/10.1073/pnas.1307157110

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Ravin, S.S., et al.: Enhancers are major targets for murine leukemia virus vector integration. J. Virol. 88, 4504–4513 (2014). https://doi.org/10.1128/JVI.00011-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El Ashkar, S., et al.: BET-independent MLV-based vectors target away from promoters and regulatory elements. Mol Ther Nucleic Acids. 3, e179 (2014). https://doi.org/10.1038/mtna.2014.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Federico, M.: From lentiviruses to lentivirus vectors. Methods Mol. Biol. 229, 3–15 (2003). https://doi.org/10.1385/1-59259-393-3:3

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe, S., Temin, H.M.: Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc. Natl. Acad. Sci. U. S. A. 79, 5986–5990 (1982). https://doi.org/10.1073/pnas.79.19.5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rattray, A.J., Champoux, J.J.: Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNase H. J. Mol. Biol. 208, 445–456 (1989). https://doi.org/10.1016/0022-2836(89)90508-1

    Article  CAS  PubMed  Google Scholar 

  15. Soneoka, Y., et al.: A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633 (1995). https://doi.org/10.1093/nar/23.4.628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blomer, U., et al.: Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997). https://doi.org/10.1128/JVI.71.9.6641-6649.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ao, Z., et al.: Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules. Antivir. Res. 79, 12–18 (2008). https://doi.org/10.1016/j.antiviral.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  18. Guo, Y., et al.: Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virol. J. 6, 39 (2009). https://doi.org/10.1186/1743-422X-6-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrara, F., et al.: The human transmembrane protease serine 2 is necessary for the production of group 2 influenza a virus pseudotypes. J Mol Genet Med. 7, 309–314 (2012)

    PubMed  Google Scholar 

  20. Naldini, L., et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272, 263–267 (1996). https://doi.org/10.1126/science.272.5259.263

    Article  CAS  PubMed  Google Scholar 

  21. Trono, D., Feinberg, M.B., Baltimore, D.: HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell. 59, 113–120 (1989). https://doi.org/10.1016/0092-8674(89)90874-x

    Article  CAS  PubMed  Google Scholar 

  22. Heyndrickx, L., et al.: Antiviral compounds show enhanced activity in HIV-1 single cycle pseudovirus assays as compared to classical PBMC assays. J. Virol. Methods. 148, 166–173 (2008). https://doi.org/10.1016/j.jviromet.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  23. Wei, X., et al.: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 46, 1896–1905 (2002). https://doi.org/10.1128/AAC.46.6.1896-1905.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, X., et al.: Antibody neutralization and escape by HIV-1. Nature. 422, 307–312 (2003). https://doi.org/10.1038/nature01470

    Article  CAS  PubMed  Google Scholar 

  25. Adachi, A., et al.: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986). https://doi.org/10.1128/JVI.59.2.284-291.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, J., et al.: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69, 6705–6711 (1995). https://doi.org/10.1128/JVI.69.11.6705-6711.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berkowitz, R.D., Hammarskjold, M.L., Helga-Maria, C., Rekosh, D., Goff, S.P.: 5′ regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. Virology. 212, 718–723 (1995). https://doi.org/10.1006/viro.1995.1530

    Article  CAS  PubMed  Google Scholar 

  28. Buchschacher Jr., G.L., Panganiban, A.T.: Human immunodeficiency virus vectors for inducible expression of foreign genes. J. Virol. 66, 2731–2739 (1992). https://doi.org/10.1128/JVI.66.5.2731-2739.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaye, J.F., Richardson, J.H., Lever, A.M.: Cis-acting sequences involved in human immunodeficiency virus type 1 RNA packaging. J. Virol. 69, 6588–6592 (1995). https://doi.org/10.1128/JVI.69.10.6588-6592.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parolin, C., Dorfman, T., Palu, G., Gottlinger, H., Sodroski, J.: Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J. Virol. 68, 3888–3895 (1994). https://doi.org/10.1128/JVI.68.6.3888-3895.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richardson, J.H., Child, L.A., Lever, A.M.: Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5′ leader region. J. Virol. 67, 3997–4005 (1993). https://doi.org/10.1128/JVI.67.7.3997-4005.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richardson, J.H., Kaye, J.F., Child, L.A., Lever, A.M.: Helper virus-free transfer of human immunodeficiency virus type 1 vectors. J. Gen. Virol. 76(Pt 3), 691–696 (1995). https://doi.org/10.1099/0022-1317-76-3-691

    Article  CAS  PubMed  Google Scholar 

  33. Sandrin, V., et al.: Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood. 100, 823–832 (2002). https://doi.org/10.1182/blood-2001-11-0042

    Article  CAS  PubMed  Google Scholar 

  34. Miller, A.D.: Retroviral vectors. Curr. Top. Microbiol. Immunol. 158, 1–24 (1992). https://doi.org/10.1007/978-3-642-75608-5_1

    Article  CAS  PubMed  Google Scholar 

  35. Uchida, N., et al.: HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 95, 11939–11944 (1998). https://doi.org/10.1073/pnas.95.20.11939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poeschla, E.M., Wong-Staal, F., Looney, D.J.: Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4, 354–357 (1998). https://doi.org/10.1038/nm0398-354

    Article  CAS  PubMed  Google Scholar 

  37. Elder, J.H., Phillips, T.R.: Feline immunodeficiency virus as a model for development of molecular approaches to intervention strategies against lentivirus infections. Adv. Virus Res. 45, 225–247 (1995). https://doi.org/10.1016/s0065-3527(08)60062-7

    Article  CAS  PubMed  Google Scholar 

  38. Tomonaga, K., Mikami, T.: Molecular biology of the feline immunodeficiency virus auxiliary genes. J. Gen. Virol. 77(Pt 8), 1611–1621 (1996). https://doi.org/10.1099/0022-1317-77-8-1611

    Article  CAS  PubMed  Google Scholar 

  39. Shacklett, B.L., Luciw, P.A.: Analysis of the vif gene of feline immunodeficiency virus. Virology. 204, 860–867 (1994). https://doi.org/10.1006/viro.1994.1609

    Article  CAS  PubMed  Google Scholar 

  40. Tomonaga, K., et al.: Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity. J. Virol. 66, 6181–6185 (1992). https://doi.org/10.1128/JVI.66.10.6181-6185.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phillips, T.R., et al.: Identification of the rev transactivation and rev-responsive elements of feline immunodeficiency virus. J. Virol. 66, 5464–5471 (1992). https://doi.org/10.1128/JVI.66.9.5464-5471.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Parseval, A., Elder, J.H.: Demonstration that orf2 encodes the feline immunodeficiency virus transactivating (tat) protein and characterization of a unique gene product with partial rev activity. J. Virol. 73, 608–617 (1999). https://doi.org/10.1128/JVI.73.1.608-617.1999

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sparger, E.E., et al.: Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology. 187, 165–177 (1992). https://doi.org/10.1016/0042-6822(92)90305-9

    Article  CAS  PubMed  Google Scholar 

  44. Tomonaga, K., et al.: The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T-cell lines and peripheral blood lymphocytes. J. Virol. 67, 5889–5895 (1993). https://doi.org/10.1128/JVI.67.10.5889-5895.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waters, A.K., et al.: Influence of ORF2 on host cell tropism of feline immunodeficiency virus. Virology. 215, 10–16 (1996). https://doi.org/10.1006/viro.1996.0002

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez, L.L., Pauszek, S.J., Bunch, T.A., Schumann, K.R.: Full-length genome analysis of natural isolates of vesicular stomatitis virus (Indiana 1 serotype) from north, central and South America. J. Gen. Virol. 83, 2475–2483 (2002). https://doi.org/10.1099/0022-1317-83-10-2475

    Article  CAS  PubMed  Google Scholar 

  47. Haglund, K., Forman, J., Krausslich, H.G., Rose, J.K.: Expression of human immunodeficiency virus type 1 gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology. 268, 112–121 (2000). https://doi.org/10.1006/viro.1999.0120

    Article  CAS  PubMed  Google Scholar 

  48. Lawson, N.D., Stillman, E.A., Whitt, M.A., Rose, J.K.: Recombinant vesicular stomatitis viruses from DNA. Proc. Natl. Acad. Sci. U. S. A. 92, 4477–4481 (1995). https://doi.org/10.1073/pnas.92.10.4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whelan, S.P., Ball, L.A., Barr, J.N., Wertz, G.T.: Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl. Acad. Sci. U. S. A. 92, 8388–8392 (1995). https://doi.org/10.1073/pnas.92.18.8388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harty, R.N., Brown, M.E., Hayes, F.P., Wright, N.T., Schnell, M.J.: Vaccinia virus-free recovery of vesicular stomatitis virus. J. Mol. Microbiol. Biotechnol. 3, 513–517 (2001)

    CAS  PubMed  Google Scholar 

  51. Lyles, D.S.: Assembly and budding of negative-strand RNA viruses. Adv. Virus Res. 85, 57–90 (2013). https://doi.org/10.1016/B978-0-12-408116-1.00003-3

    Article  CAS  PubMed  Google Scholar 

  52. Cortese, M., et al.: Ultrastructural characterization of zika virus replication factories. Cell Rep. 18, 2113–2123 (2017). https://doi.org/10.1016/j.celrep.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Welsch, S., et al.: Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe. 5, 365–375 (2009). https://doi.org/10.1016/j.chom.2009.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Irie, T., Licata, J.M., McGettigan, J.P., Schnell, M.J., Harty, R.N.: Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A. J. Virol. 78, 2657–2665 (2004). https://doi.org/10.1128/jvi.78.6.2657-2665.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Syed, A.M., et al.: Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science. 374, 1626–1632 (2021). https://doi.org/10.1126/science.abl6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Drosten, C., et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003). https://doi.org/10.1056/NEJMoa030747

    Article  CAS  PubMed  Google Scholar 

  57. Ksiazek, T.G., et al.: A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003). https://doi.org/10.1056/NEJMoa030781

    Article  CAS  PubMed  Google Scholar 

  58. Narayanan, K., Maeda, A., Maeda, J., Makino, S.: Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J. Virol. 74, 8127–8134 (2000). https://doi.org/10.1128/jvi.74.17.8127-8134.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, Y., Yang, Z.Y., Kong, W.P., Nabel, G.J.: Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J. Virol. 78, 12557–12565 (2004). https://doi.org/10.1128/JVI.78.22.12557-12565.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y., Kong, W.P., Nabel, G.J.: Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of gag and pol expression. J. Virol. 75, 4947–4951 (2001). https://doi.org/10.1128/JVI.75.10.4947-4951.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wills, J.W., Craven, R.C., Achacoso, J.A.: Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells. J. Virol. 63, 4331–4343 (1989). https://doi.org/10.1128/JVI.63.10.4331-4343.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vennema, H., et al.: Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15, 2020–2028 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuo, L., Masters, P.S.: Functional analysis of the murine coronavirus genomic RNA packaging signal. J. Virol. 87, 5182–5192 (2013). https://doi.org/10.1128/JVI.00100-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carstens, E.B., Ball, L.A.: Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2008). Arch. Virol. 154, 1181–1188 (2009). https://doi.org/10.1007/s00705-009-0400-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, S.C., Olsthoorn, R.C.: Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs. Virology. 401, 29–41 (2010). https://doi.org/10.1016/j.virol.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  66. Hsieh, P.K., et al.: Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79, 13848–13855 (2005). https://doi.org/10.1128/JVI.79.22.13848-13855.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arita, M., Iwai-Itamochi, M.: Evaluation of antigenic differences between wild and Sabin vaccine strains of poliovirus using the pseudovirus neutralization test. Sci. Rep. 9, 11970 (2019). https://doi.org/10.1038/s41598-019-48534-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nguyen, H.P., Ramirez-Fort, M.K., Rady, P.L.: The biology of human papillomaviruses. Curr. Probl. Dermatol. 45, 19–32 (2014). https://doi.org/10.1159/000355959

    Article  PubMed  Google Scholar 

  69. Buck, C.B., et al.: Arrangement of L2 within the papillomavirus capsid. J. Virol. 82, 5190–5197 (2008). https://doi.org/10.1128/JVI.02726-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frazer, I.H., Leggatt, G.R., Mattarollo, S.R.: Prevention and treatment of papillomavirus-related cancers through immunization. Annu. Rev. Immunol. 29, 111–138 (2011). https://doi.org/10.1146/annurev-immunol-031210-101308

    Article  CAS  PubMed  Google Scholar 

  71. Holmgren, S.C., Patterson, N.A., Ozbun, M.A., Lambert, P.F.: The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J. Virol. 79, 3938–3948 (2005). https://doi.org/10.1128/JVI.79.7.3938-3948.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buck, C.B., Pastrana, D.V., Lowy, D.R., Schiller, J.T.: Efficient intracellular assembly of papillomaviral vectors. J. Virol. 78, 751–757 (2004). https://doi.org/10.1128/jvi.78.2.751-757.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pastrana, D.V., et al.: Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology. 321, 205–216 (2004). https://doi.org/10.1016/j.virol.2003.12.027

    Article  CAS  PubMed  Google Scholar 

  74. Sehr, P., et al.: High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS One. 8, e75677 (2013). https://doi.org/10.1371/journal.pone.0075677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nie, J., Huang, W., Wu, X., Wang, Y.: Optimization and validation of a high throughput method for detecting neutralizing antibodies against human papillomavirus (HPV) based on pseudovirons. J. Med. Virol. 86, 1542–1555 (2014). https://doi.org/10.1002/jmv.23995

    Article  CAS  PubMed  Google Scholar 

  76. Yousefi, Z., et al.: An update on human papilloma virus vaccines: history, types, protection, and efficacy. Front. Immunol. 12, 805695 (2021). https://doi.org/10.3389/fimmu.2021.805695

    Article  CAS  PubMed  Google Scholar 

  77. Hamamoto, N., et al.: Association between RABV G proteins transported from the perinuclear space to the cell surface membrane and N-glycosylation of the Sequon Asn(204). Jpn. J. Infect. Dis. 68, 387–393 (2015). https://doi.org/10.7883/yoken.JJID.2014.533

    Article  CAS  PubMed  Google Scholar 

  78. Slough, M.M., Chandran, K., Jangra, R.K.: Two point mutations in Old World hantavirus glycoproteins afford the generation of highly infectious recombinant vesicular stomatitis virus vectors. mBio. 10 (2019). https://doi.org/10.1128/mBio.02372-18

  79. Giroglou, T., et al.: Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J. Virol. 78, 9007–9015 (2004). https://doi.org/10.1128/JVI.78.17.9007-9015.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fu, X., Tao, L., Zhang, X.: Comprehensive and systemic optimization for improving the yield of SARS-CoV-2 spike pseudotyped virus. Mol Ther Methods Clin Dev. 20, 350–356 (2021). https://doi.org/10.1016/j.omtm.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  81. Havranek, K.E., et al.: SARS-CoV-2 spike alterations enhance Pseudoparticle Titers and replication-competent VSV-SARS-CoV-2 virus. Viruses. 12 (2020). https://doi.org/10.3390/v12121465

  82. Yu, J., et al.: Deletion of the SARS-CoV-2 spike cytoplasmic tail increases infectivity in Pseudovirus neutralization assays. J. Virol. (2021). https://doi.org/10.1128/JVI.00044-21

  83. Johnson, J.E., Rodgers, W., Rose, J.K.: A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions. Virology. 251, 244–252 (1998). https://doi.org/10.1006/viro.1998.9429

    Article  CAS  PubMed  Google Scholar 

  84. Johnson, J.E., Schnell, M.J., Buonocore, L., Rose, J.K.: Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J. Virol. 71, 5060–5068 (1997). https://doi.org/10.1128/JVI.71.7.5060-5068.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Owens, R.J., Rose, J.K.: Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J. Virol. 67, 360–365 (1993). https://doi.org/10.1128/JVI.67.1.360-365.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, H., et al.: Introducing a cleavable signal peptide enhances the packaging efficiency of lentiviral vectors pseudotyped with Japanese encephalitis virus envelope proteins. Virus Res. 229, 9–16 (2017). https://doi.org/10.1016/j.virusres.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, R., et al.: Novel strategy for expression and characterization of rabies virus glycoprotein. Protein Expr. Purif. 168, 105567 (2020). https://doi.org/10.1016/j.pep.2019.105567

    Article  CAS  PubMed  Google Scholar 

  88. Garcia, J.M., Lai, J.C.: Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev. Anti-Infect. Ther. 9, 443–455 (2011). https://doi.org/10.1586/eri.11.25

    Article  PubMed  Google Scholar 

  89. Grehan, K., Ferrara, F., Temperton, N.: An optimised method for the production of MERS-CoV spike expressing viral pseudotypes. MethodsX. 2, 379–384 (2015). https://doi.org/10.1016/j.mex.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu, J., et al.: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes Dis. 7, 551–557 (2020). https://doi.org/10.1016/j.gendis.2020.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nie, Y., et al.: Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem. Biophys. Res. Commun. 321, 994–1000 (2004). https://doi.org/10.1016/j.bbrc.2004.07.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, P., et al.: An optimized and robust SARS-CoV-2 pseudovirus system for viral entry research. J. Virol. Methods. 295, 114221 (2021). https://doi.org/10.1016/j.jviromet.2021.114221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fernandez, E., et al.: Conformational and thermal stability improvements for the large-scale production of yeast-derived rabbit hemorrhagic disease virus-like particles as multipurpose vaccine. PLoS One. 8, e56417 (2013). https://doi.org/10.1371/journal.pone.0056417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mossadegh, N., et al.: Codon optimization of the human papillomavirus 11 (HPV 11) L1 gene leads to increased gene expression and formation of virus-like particles in mammalian epithelial cells. Virology. 326, 57–66 (2004). https://doi.org/10.1016/j.virol.2004.04.050

    Article  CAS  PubMed  Google Scholar 

  95. Cronin, J., Zhang, X.Y., Reiser, J.: Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387–398 (2005). https://doi.org/10.2174/1566523054546224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Medina, M.F., et al.: Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol. Ther. 8, 777–789 (2003). https://doi.org/10.1016/j.ymthe.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  97. Chakraborty, S.: Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity. Biochem. Biophys. Res. Commun. 534, 374–380 (2021). https://doi.org/10.1016/j.bbrc.2020.11.075

    Article  CAS  PubMed  Google Scholar 

  98. Gu, H., et al.: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 369, 1603–1607 (2020). https://doi.org/10.1126/science.abc4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Johnson, M.C., et al.: Optimized Pseudotyping conditions for the SARS-COV-2 spike glycoprotein. J. Virol. 94 (2020). https://doi.org/10.1128/JVI.01062-20

  100. Korber, B., et al.: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 182, 812-827 e819 (2020). https://doi.org/10.1016/j.cell.2020.06.043

    Article  CAS  Google Scholar 

  101. Liu, Q., et al.: Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci. Rep. 7, 45552 (2017). https://doi.org/10.1038/srep45552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mao, Y., et al.: Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int. J. Med. Sci. 12, 407–415 (2015). https://doi.org/10.7150/ijms.11270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Desmaris, N., et al.: Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol. Ther. 4, 149–156 (2001). https://doi.org/10.1006/mthe.2001.0431

    Article  CAS  PubMed  Google Scholar 

  104. Park, F.: Correction of bleeding diathesis without liver toxicity using arenaviral-pseudotyped HIV-1-based vectors in hemophilia a mice. Hum. Gene Ther. 14, 1489–1494 (2003). https://doi.org/10.1089/104303403769211691

    Article  CAS  PubMed  Google Scholar 

  105. Beyer, W.R., Westphal, M., Ostertag, W., von Laer, D.: Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495 (2002). https://doi.org/10.1128/jvi.76.3.1488-1495.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Temperton, N.J., et al.: A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Other Respir. Viruses. 1, 105–112 (2007). https://doi.org/10.1111/j.1750-2659.2007.00016.x

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cosset, F.L., et al.: Characterization of Lassa virus cell entry and neutralization with Lassa virus pseudoparticles. J. Virol. 83, 3228–3237 (2009). https://doi.org/10.1128/JVI.01711-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoffmann, M., et al.: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271-280 e278 (2020). https://doi.org/10.1016/j.cell.2020.02.052

    Article  Google Scholar 

  109. Li, F., Li, W., Farzan, M., Harrison, S.C.: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 309, 1864–1868 (2005). https://doi.org/10.1126/science.1116480

    Article  CAS  PubMed  Google Scholar 

  110. Kim, J.S., et al.: Genome-wide identification and characterization of point mutations in the SARS-CoV-2 genome. Osong. Public Health Res. Perspect. 11, 101–111 (2020). https://doi.org/10.24171/j.phrp.2020.11.3.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ogando, N.S., et al.: SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 101, 925–940 (2020). https://doi.org/10.1099/jgv.0.001453

    Article  PubMed  PubMed Central  Google Scholar 

  112. Carnell, G.W., Ferrara, F., Grehan, K., Thompson, C.P., Temperton, N.J.: Pseudotype-based neutralization assays for influenza: a systematic analysis. Front. Immunol. 6, 161 (2015). https://doi.org/10.3389/fimmu.2015.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bertram, S., et al.: TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J. Virol. 84, 10016–10025 (2010). https://doi.org/10.1128/JVI.00239-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, W., et al.: Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies. J. Virol. Methods. 153, 111–119 (2008). https://doi.org/10.1016/j.jviromet.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  115. Nasri, M., Karimi, A., Allahbakhshian Farsani, M.: Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology. 66, 1031–1038 (2014). https://doi.org/10.1007/s10616-013-9652-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiong, H.L., et al.: Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect. 9, 2105–2113 (2020). https://doi.org/10.1080/22221751.2020.1815589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morita, S., Kojima, T., Kitamura, T.: Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000). https://doi.org/10.1038/sj.gt.3301206

    Article  CAS  PubMed  Google Scholar 

  118. Zhao, G., et al.: A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol. J. 10, 266 (2013). https://doi.org/10.1186/1743-422X-10-266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tang, D.J., et al.: A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles. PLoS One. 7, e43596 (2012). https://doi.org/10.1371/journal.pone.0043596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mekkaoui, L., et al.: Optimised method for the production and titration of lentiviral vectors Pseudotyped with the SARS-CoV-2 spike. Bio Protoc. 11, e4194 (2021). https://doi.org/10.21769/BioProtoc.4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, M., Zhang, X.E.: Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. Int. J. Biol. Sci. 17, 1574–1580 (2021). https://doi.org/10.7150/ijbs.59184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sholukh, A.M., et al.: Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays. J. Clin. Microbiol. 59, e0052721 (2021). https://doi.org/10.1128/JCM.00527-21

    Article  PubMed  Google Scholar 

  123. He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S.: Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J. Immunol. 174, 4908–4915 (2005). https://doi.org/10.4049/jimmunol.174.8.4908

    Article  CAS  PubMed  Google Scholar 

  124. Mavhandu, L.G., et al.: Development of a pseudovirus assay and evaluation to screen natural products for inhibition of HIV-1 subtype C reverse transcriptase. J. Ethnopharmacol. 258, 112931 (2020). https://doi.org/10.1016/j.jep.2020.112931

    Article  CAS  PubMed  Google Scholar 

  125. Nie, J., et al.: Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system. Sci. Rep. 7, 42769 (2017). https://doi.org/10.1038/srep42769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fan, P., et al.: Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs. 12, 1742457 (2020). https://doi.org/10.1080/19420862.2020.1742457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ning, T., et al.: Monitoring neutralization property change of evolving Hantaan and Seoul viruses with a novel Pseudovirus-based assay. Virol. Sin. 36, 104–112 (2021). https://doi.org/10.1007/s12250-020-00237-y

    Article  CAS  PubMed  Google Scholar 

  128. Yuan, J., et al.: Mutations in the G-H loop region of ephrin-B2 can enhance Nipah virus binding and infection. J. Gen. Virol. 92, 2142–2152 (2011). https://doi.org/10.1099/vir.0.033787-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Haid, S., Grethe, C., Bankwitz, D., Grunwald, T., Pietschmann, T.: Identification of a human respiratory syncytial virus cell entry inhibitor by using a novel lentiviral Pseudotype system. J. Virol. 90, 3065–3073 (2015). https://doi.org/10.1128/JVI.03074-15

    Article  CAS  PubMed  Google Scholar 

  130. Cruz, M.A., Parks, G.D.: Enhancement of infectivity of insect cell-derived La Crosse virus by human serum. Virus Res. 292, 198228 (2021). https://doi.org/10.1016/j.virusres.2020.198228

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, L., et al.: A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum. Vaccin. Immunother. 13, 1811–1817 (2017). https://doi.org/10.1080/21645515.2017.1325050

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hu, D., et al.: Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One. 9, e110893 (2014). https://doi.org/10.1371/journal.pone.0110893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vasmehjani, A.A., et al.: Efficient production of a lentiviral system for displaying Crimean-Congo hemorrhagic fever virus glycoproteins reveals a broad range of cellular susceptibility and neutralization ability. Arch. Virol. 165, 1109–1120 (2020). https://doi.org/10.1007/s00705-020-04576-9

    Article  CAS  PubMed  Google Scholar 

  134. Godbey, W.T., Wu, K.K., Hirasaki, G.J., Mikos, A.G.: Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther. 6, 1380–1388 (1999). https://doi.org/10.1038/sj.gt.3300976

    Article  CAS  PubMed  Google Scholar 

  135. Bertram, S., Glowacka, I., Steffen, I., Kuhl, A., Pohlmann, S.: Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev. Med. Virol. 20, 298–310 (2010). https://doi.org/10.1002/rmv.657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Skehel, J.J., Wiley, D.C.: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000). https://doi.org/10.1146/annurev.biochem.69.1.531

    Article  CAS  PubMed  Google Scholar 

  137. Olsen, J.C., Sechelski, J.: Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 6, 1195–1202 (1995). https://doi.org/10.1089/hum.1995.6.9-1195

    Article  CAS  PubMed  Google Scholar 

  138. Ansarah-Sobrinho, C., Nelson, S., Jost, C.A., Whitehead, S.S., Pierson, T.C.: Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology. 381, 67–74 (2008). https://doi.org/10.1016/j.virol.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  139. Mattia, K., et al.: Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes. PLoS One. 6, e27252 (2011). https://doi.org/10.1371/journal.pone.0027252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kutner, R.H., Puthli, S., Marino, M.P., Reiser, J.: Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol. 9, 10 (2009). https://doi.org/10.1186/1472-6750-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kutner, R.H., Zhang, X.Y., Reiser, J.: Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009). https://doi.org/10.1038/nprot.2009.22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y. et al. (2023). Pseudotyped Viruses. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_1

Download citation

Publish with us

Policies and ethics