Skip to main content

Assessment of Radionuclide Transfer in Terrestrial Ecosystem

  • Chapter
  • First Online:
Handbook on Radiation Environment, Volume 1
  • 48 Accesses

Abstract

Radioactivity in the terrestrial environment is present since time immemorial and contributed by natural radionuclides of 238U and 232Th series and artificial radionuclides of 137Cs, 90Sr, etc. The major portion of food consumed by humans is grown in the terrestrial environment, and these radionuclides deliver radiation dose to humans and non-human biota through various exposure pathways. Soil is an important constituent of terrestrial environment comprising of mixture of sand, silt and clay in varying proportions, which give each soil type, characteristic texture and properties. The important physicochemical processes by which soils provide the nourishment for plants are controlled largely within the clay fraction of soil. The formation of soil in various agroclimatic zones is influenced by climatic factors of precipitation and temperature. Uptake of radionuclide depends on its availability in root zone of plant and its chemical form available for transport to root zone and translocation to edible portions of the plant. The major pathways and compartments considered for assessment of the impact to terrestrial environment are foliar interception, translocation and uptake from root zone by plants. Partitioning of radionuclide between soil and interstitial water is described by distribution coefficient Kd expressed in L kgāˆ’1. There is a strong dependence of Kd for uranium, particularly within the pH range of 5ā€“7, where Kd (U) is observed to be 10 times higher. The sorption behavior (Kd Iodine) of iodine is more complex. Data generated on soil-to-plant transfer factor (TF) or concentration ratio (CR) is an important parameter used in the Radiological Environment Impact Assessment (REIA) models. Important factors affecting TF are chemical and physical characteristics of soils, agricultural practices adopted, crop types, frequency of rain events and dietary consumption practices. Studies indicated that sorption of radiocesium in soils is influenced by ionic exchange processes at frayed edge sites (FES) regular exchange sites present in soil. Soils containing 14ā€“50% organic matter, effectively complex Ra, more than its parent element Uranium. Lichens contain significantly higher concentrations of 137Cs, 210Po and 210Pb as compared to vascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu KN, Mao SY (1999) Assessment of radionuclide contents in food in Hong Kong. Health Phys 77:686ā€“696

    ArticleĀ  Google ScholarĀ 

  2. Shankaran AV, Jayaswal B, Nambi KSV, Sunta CM (1986) U, Th and K distribution inferred from regional geology and the terrestrial radiation profiles in India, Nuclear India, BARC, DAE, 27/6/1986

    Google ScholarĀ 

  3. Mishra MK, Jha SK, Patra AC, Mishra DG, Sahoo SK, Sahu SK, Verma GP, Saindane SS, Mitra P, Garg S, Pulhani V, Saradhi IV, Choudhury P, Vinod Kumar A, Sapra BK, Kulkarni MS, Aswal DK (2023) Generation of map on natural environmental background absorbed dose rate in India. J Environ Radioact 262:107146

    Google ScholarĀ 

  4. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation; Annex J. Exposure and Effects of Chernobyl Accident. United Nations, New York. Report to General Assembly

    Google ScholarĀ 

  5. Stralberg E, Varskog AThS, Raaum A, Varskog P (2003) Naturally occurring radionuclides in the marine environmentā€”An overview of current knowledge with emphasis on the North Sea area, ND/E-19/03. Norse Decom AS, Norway

    Google ScholarĀ 

  6. IAEA TRS-310 (1990) The environmental behaviour of radium, Vol. 1-II. Technical report series no. 310. International Atomic Energy Agency

    Google ScholarĀ 

  7. Geibert W (2008) Appendix A charts of the 238U, 235U, 232Th, and 241Am decay series with principal modes of decay, their intensities and energies. In: Krishnaswami S, Kirk Cochran J (eds) Radioactivity in the environment, vol 13. Elsevier, pp 417ā€“423

    Google ScholarĀ 

  8. Peterson KR (1970) An empirical model for estimating worldwide deposition from atmospheric nuclear detonations. Health Phys 18:357ā€“378

    ArticleĀ  Google ScholarĀ 

  9. IAEA TECDOC-838 (1995) Sources of radioactivity in the marine environment and their relative contribution to overall dose assessment from marine radioactivity (MARDOS), IAEA, Vienna

    Google ScholarĀ 

  10. Aarkrog A (2003) Input of anthropogenic radionuclides into the world ocean. Deep-Sea Res II 50(2597):2606

    ADSĀ  Google ScholarĀ 

  11. Volchok HL, Nowen VT, Folsom TR, Broecker WS, Schuert EA, Bien GS (1971) Oceanic distribution of radionuclides from nuclear explosions. Chp 3. Radioactivity in the Marine Environment. National Academy of Science, pp 42ā€“89

    Google ScholarĀ 

  12. Middleton LJ (1959) Radioactive strontium and caesium in the edible parts of crop plants after foliar contamination. Int J Radiat Biol 4:387ā€“402

    Google ScholarĀ 

  13. International Union of Radioecology, Sixth report of the working group soil-to plant transfer factors. European Community Contract B16-052-B (1989)

    Google ScholarĀ 

  14. IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472, 79 (IAEA, Vienna)

    Google ScholarĀ 

  15. IAEA (2009) Quantification of radionuclide transfers in terrestrial and freshwater environments for radiological assessments. In: IAEA-TECDOC-1616. IAEA, Vienna

    Google ScholarĀ 

  16. Tagami K, Uchida S (2005) Soil-to-plant transfer factors of technetium-99 for various plants collected in the Chernobyl area. J Nucl Radiochem Sci 6:261ā€“264

    ArticleĀ  Google ScholarĀ 

  17. Feng X, Vico G, Porporato A (2012) On the effects of seasonality on soil water balance and plant growth. Water Resour Res 48:W05543. https://doi.org/10.1029/2011WR011263

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. IAEA 2021: Soil-Plant transfer of radionuclides in non-temperate environments, TECDOC-1979

    Google ScholarĀ 

  19. Agricultural Radioecology. In: Alexakhin RM, Korneev NA (eds). Moscow (1992) (in Russian)

    Google ScholarĀ 

  20. Evans EJ, Dekker AJ (1966) Plant uptake of 137Cs from nine Canadian soils. J Soil Sci 46:167ā€“176

    Google ScholarĀ 

  21. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modelling, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research. Washington, DC 20555-0001. (2003) 170

    Google ScholarĀ 

  22. Hilton J, Cambray RS, Green N (1992) Fractionation of radioactive caesium in airborne particles containing bomb fallout, Chernobyl fallout and atmospheric material from the Selafield site. J Environ Radioact 15:103ā€“108

    ArticleĀ  Google ScholarĀ 

  23. Ewers LW, Ham GJ, Wilkins BT (2003) Review of the transfer of naturally occurring radionuclides to terrestrial plants and domestic animals, NRPB-W49. Chilton. Didcot, UK, 64

    Google ScholarĀ 

  24. Konoplev AV, Bulgakov AA, Popov VE, Bobovnikova TSI (1992) Behaviour of long-lived Chernobyl radionuclides in soil-water system, Annalist 117:1041ā€“1047

    Google ScholarĀ 

  25. Fesenko SV, Spiridonov SI, Sanzharova NI, Alexakhin RM (1996) Dynamics of 137Cs bioavailability in a soil-plant system in areas of the Chernobyl Nuclear Power Plant accident zone with a different physicochemical composition of radioactive fallout. J Environ Radioact 34:287ā€“313

    ArticleĀ  Google ScholarĀ 

  26. Arkhipov AN (1995) Behavior of 90Sr and 137Cs in agroecosystems of the restriction zone of the Chernobyl NPP, Candidate thesis, Obninsk

    Google ScholarĀ 

  27. Mason, Zanner CW (2005) Encyclopedia of soils in the environment

    Google ScholarĀ 

  28. IAEA Programme on Modelling and Data for Radiological Impact Assessments (MODARIA II), Arid and semi-arid subtropical and tropical ecozone (II), BernhardĀ Lucke, Institute of Geography, Erlangen, Germany

    Google ScholarĀ 

  29. Soil Survey Staff (2022) Keys to Soil Taxonomy, 13th edn. USDA Natural Resources Conservation Service

    Google ScholarĀ 

  30. Gil-GarcĆ­a CJ, Rigol A, Vidal M (2011) Comparison of mechanistic and PLSbased regression models to predict radiocaesium distribution coefficients in soils. J Hazard Mater 197:11

    ArticleĀ  Google ScholarĀ 

  31. Whitaker RH (1975) Communities and ecosystems, 2nd revised. Macmillan Publishing Co., New York

    Google ScholarĀ 

  32. Nakamaru Y, Ishikawa N, Tagami K, Uchida S (2007) Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan. Interf Pollut 306(1):111

    Google ScholarĀ 

  33. Eguchi S (2017) Behavior of radioactive cesium in agricultural environment. J Jpn Soc Soil Phys 135:9

    Google ScholarĀ 

  34. Cremers A, Elsen A, Preter PD, Maes A (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335(6187):247

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Wauters J, Vidal M, Elsen A, Cremers A (1996) Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments. Part two: a new procedure for solid phase speciation of radiocaesium. Appl Geochemā€”Appl Geochem 11:595

    Google ScholarĀ 

  36. United Nations (2000) Sources and effects of ionizing radiation, Annex Bā€”Exposures from natural radiation sources, Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), UN, New York

    Google ScholarĀ 

  37. United Nations (2008) Sources and effects of ionizing radiation, 2 vols. United Nations, New York

    Google ScholarĀ 

  38. Iyengar MAR (1990) The natural distribution of radium, Environmental Behaviour of Radium, and Iyengar MAR, Narayana Rao K, Uptake of radium by marine animals, The Environmental Behaviour of Radium, Technical Reports Series No. 310, IAEA, Vienna

    Google ScholarĀ 

  39. United Nations (1993) Sources and effects of ionizing radiation, Annex A: Exposures from Natural Sources of Radiation, Scientific Committee on the Effects of Atomic Radiation. (UNSCEAR), UN, New York

    Google ScholarĀ 

  40. United Nations (2008) Sources and effects of ionizing radiation, Annex Eā€”Effects of Ionizing Radiation on Non-Human Biota, Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), UN, New York

    Google ScholarĀ 

  41. Riese AC (1982) Adsorption of radium and thorium onto Quartz and Kaolinite: a comparison of solution/surface equilibria models, PhD Thesis, Colorado School of Mines, Golden, CO

    Google ScholarĀ 

  42. Ames LL, McGARRAH JE, Walker BA (1983) Sorption of trace constituents from aqueous solutions onto secondary minerals; II, Radium. Clays Clay Miner 31:335ā€“342

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. BeneÅ” P (1985) Interaction of radium with freshwater sediments and their mineral components. II. Kaolinite and montmorillonite. J Radio-Anal Nucl Chem 89:339ā€“351

    Google ScholarĀ 

  44. Nathwani JS, Phillips CR (1979) Adsorption of 226Ra by soils (I), Chemosphere:5285ā€“291

    Google ScholarĀ 

  45. United States Environmental Protection Agency (1999) Technologically enhanced naturally occurring radioactive materials in the southwestern copper belt of Arizona. U.S. Environmental Protection Agency, Washington, DC

    Google ScholarĀ 

  46. OECD Nuclear Energy Agency, International Atomic Energy Agency, Environmental Remediation of Uranium Production Facilities, OECD, Paris (2002)

    Google ScholarĀ 

  47. Langmuir D (1978) Uranium solution- mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmoschimica Acta 42:547ā€“569

    ArticleĀ  ADSĀ  Google ScholarĀ 

  48. Cothern CR, Lappenbusch WL, Michel J (1986) Drinking-water contribution to natural background radiation. Health Phys 50(1):33ā€“47. https://doi.org/10.1097/00004032-198601000-00002 sediment[19][3.93]

  49. Vandenhove H, Verrezen F, Landa ER (2010) Radium. In: Atwood D (ed) Radionuclides in the Environment. Wiley, Chichester, pp 97ā€“108

    Google ScholarĀ 

  50. Moore WS, Shaw TJ (2008) Fluxes and behavior of radium isotopes, barium, and uranium in seven Southeastern US rivers and estuaries. Mar Chem 108:236ā€“254

    ArticleĀ  Google ScholarĀ 

  51. Sheng ZZ, Kuroda PK (1986) 234U/238U ratios from a Colarado carnotite, Radiochim. Acta 40(2) 95. [3.10] Yanase N, Payne TE, Sekine K (1995) Groundwater geochemistry in the Koongarra Ore Deposit, Australia, 1. Implications for uranium migration Geochem J 29 1

    Google ScholarĀ 

  52. Sato T (1997) Iron nodules scavenging uranium from groundwater. Environ Sci Technol 31:2854

    ArticleĀ  ADSĀ  Google ScholarĀ 

  53. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Ac 58 465

    Google ScholarĀ 

  54. Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioactiv 8:255

    ArticleĀ  Google ScholarĀ 

  55. Laurette J et al (2012) Influence of uranium speciation on its accumulation and translocation in three plant species: Oilseed rape, sunflower and wheat. Environ Exp Bot 77:96

    ArticleĀ  Google ScholarĀ 

  56. Barthel FH, Tulsidas H, Thorium: geology, occurrence, deposits and resources, IAEA-CN-216 Abstract 164

    Google ScholarĀ 

  57. World nuclear association, information-library, current and future generation,thorium.aspx

    Google ScholarĀ 

  58. Takashiro A, Chapter-9, Nature, Sources, Resources, and Production of Thorium (MiloÅ” RenĆ©), Descriptive Inorganic Chemistry Researches of Metal Compounds, , BoD ā€“ Books on Demand, 2017

    Google ScholarĀ 

  59. Langmuir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochim Cosmochim Acta 44(11):1753ā€“1766

    ArticleĀ  ADSĀ  Google ScholarĀ 

  60. Toxicological profile for Thorium ATSDR US Department of health and human services, September-2019

    Google ScholarĀ 

  61. Harmsen K, de Haan FAM (1980) Occurrence and behaviour of uranium and thorium in soil and water. Neth J Agric Sci 28:40ā€“62. https://doi.org/10.18174/njas.v28i1.17043

  62. DonaldĀ L,Ā Janet SH (2015) Uranium and thorium behavior in groundwater of the natural spa area ā€œChoygan mineral waterā€ (East Tuva) IOP Conference of Series: Earth and Environmental Science 27:012034

    Google ScholarĀ 

  63. Shtangeeva I, Ayrault S, Jain J (2005) Thorium uptake by wheat at different stages of plant growth. J Environ Radioact 81:283ā€“293

    ArticleĀ  Google ScholarĀ 

  64. Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems: a critial review of data. Volume 1. A.A. Balkema, Rotterdam, 496 pp

    Google ScholarĀ 

  65. Desmet G, Nassimbeni P, Belli M (1990) Transfer of radionuclides in natural and seminatural environments. Elsevier Applied Science, London, New York

    Google ScholarĀ 

  66. Van Bergeijk K, Noordijk H, Lembrechts J, Frissel M (1992) Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radiocesium and -strontium as analyzed by a nonparametric method. J Environ Radioact 15:265ā€“276

    ArticleĀ  Google ScholarĀ 

  67. Baranov VI, Morozova NG, Kunasheva KG, Grigorā€™ev GI (1964) Geochemistry of some natural radioactive elements in soil. Soviet Soil Sci J3:733

    Google ScholarĀ 

  68. U.C. Environment (2005)

    Google ScholarĀ 

  69. Pulhani V, Kayasth S, More AK, Mishra UC (2000) Determination of traces of uranium and thorium in environmental matrices by neutron activation analysis. J Radioanal Nucl Chem 243(3):625ā€“629

    ArticleĀ  Google ScholarĀ 

  70. Shtangeeva IV (1993) Chemical element distribution in soils and some species of plants. In: Frontasyeva M (ed) Activation analysis in environmental protection, JINR, Dubna, pp 340ā€“351

    Google ScholarĀ 

  71. Kolb W (1996) Thorium, uranium and plutonium in surface air at Vardƶ. J Environ Radioact 31(1):1ā€“6

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  72. Katsumi H, Yukio S (1987) Thorium isotopes in the surface air of the Western North Pacific Ocean. J Environ Radioact 5(6):459ā€“475

    ArticleĀ  Google ScholarĀ 

  73. Akyil S, Gurboga G, Aslani MAA, Aytas S (2008) Vertical distribution of Ra-226 and Po-210 in agricultural soils in Buyuk Menderes Basin, Turkey. J Hazard Mater 157(2ā€“3):328ā€“334

    ArticleĀ  Google ScholarĀ 

  74. Cornell R (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171:483ā€“500

    ArticleĀ  Google ScholarĀ 

  75. Giannakopoulou F, Haidouti C, Chronopoulou A, Gasparatos D (2007) Sorption behavior of cesium on various soils under different pH levels. J Hazard Mater 149:553ā€“556

    ArticleĀ  Google ScholarĀ 

  76. Blume HP, BrĆ¼mmer G, Fleige H, Horn R, Kandeler E, Kƶgel-Knabner I (2016) Scheffer/Schachtschabel soil science. Springer Verlag, Berlin Heidelberg

    BookĀ  Google ScholarĀ 

  77. Jenkins A, Whitehead P, Hunt J (1988) Modelling caesium transport. Institute of Hydrology, 44 pp

    Google ScholarĀ 

  78. Bystrzejewska-Piotrowska G, Urban P (2003) Accumulation of cesium in leaves of Lepidium sativum and its influence on photosynthesis and transpiration. Acta Biol Cracov Ser Bot 45:131ā€“137

    Google ScholarĀ 

  79. Vasilenko IY, Vasilenko OI (2002) Radioactive strontium. Energy Econ Technol Ecol 4:26ā€“32

    Google ScholarĀ 

  80. Distribution of Strontium in Soil: Interception, Weathering, Speciation, and Translocation to Plants, Sergiy Dubchak In book: Behaviour of Strontium in Plants and the Environment, pp 33ā€“43

    Google ScholarĀ 

  81. Ehlken S, Kirchner G (1996) Seasonal variations in soil-to-grass transfer of fallout strontium and cesium and of potassium in North German soils. J Environ Radioact 33:147ā€“181

    ArticleĀ  Google ScholarĀ 

  82. Alloway BJ (1997) Heavy metals in soils. Blackie Academic and Professional, London

    Google ScholarĀ 

  83. Jenkins A, Whitehead P, Hunt J (1988) Modelling caesium transport. Institute of Hydrology, 44 pp

    Google ScholarĀ 

  84. Bystrzejewska-Piotrowska G, Urban P (2003) Accumulation of cesium in leaves of Lepidium sativum and its influence on photosynthesis and transpiration. Acta Biol Cracov Ser Bot 45:131ā€“137

    Google ScholarĀ 

  85. Thorell CB (1964) Secretion of radioiodine in milk following a single oral administration in the cow. Acta Veterinaria Scandinavia 5:217ā€“233

    ArticleĀ  Google ScholarĀ 

  86. Lengemann FW (1970) Metabolism of radioiodide by lactating goats given iodineāˆ’1 31 for extended periods. J Dairy Sci 53:165ā€“170

    ArticleĀ  Google ScholarĀ 

  87. Vandecasteele CM, Van Hees M, Hardeman F, Voigt GM, Howard BJ (2000) The true absorption of I-131, and its transfer to milk in cows given different stable iodine diets. J Environ Radioact 47:301ā€“317

    ArticleĀ  Google ScholarĀ 

  88. Djingova R, Kuleff I (2002) Concentration of caesium-137, cobalt-60 and potassium- 40 in some wild and edible plants around a nuclear power plant in Bulgaria. J Environment Radioact 59:61ā€“73

    ArticleĀ  Google ScholarĀ 

  89. ATSDR. Toxicological profile for cobalt. Agency for toxic substances and disease registry. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service (2004)

    Google ScholarĀ 

  90. Paveley CF (1988) Heavy metal sources and distribution in soils, with special reference to Wales. University of Bradford, Bradford UK

    Google ScholarĀ 

  91. Nagpal NK (2004) Water quality guidelines for cobalt. Ministry of Water, Land and Air Protection, Water Protection Section, Water, Air and Climate Change Branch, Victoria

    Google ScholarĀ 

  92. Chaney RL (1983) Potential effects of waste constituents on the food chain. Noyes Data Corp, Park Ridge, NJ

    Google ScholarĀ 

  93. Hamilton EI (1994) The geobiochemistry of cobalt. Sci Total Environ 150(1ā€“3):7ā€“39

    ArticleĀ  ADSĀ  Google ScholarĀ 

  94. Kukiera U, Petersb CA, Chaneya RL, Angleb JS, Rosebergc RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090ā€“2102

    ArticleĀ  Google ScholarĀ 

  95. Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84:689ā€“694

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S.N., Raj, S.S., Kumar, D., Gocher, A.K. (2024). Assessment of Radionuclide Transfer in Terrestrial Ecosystem. In: Aswal, D.K. (eds) Handbook on Radiation Environment, Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-97-2795-7_5

Download citation

Publish with us

Policies and ethics