Skip to main content

Effects of Low Dose Ionizing Radiation on Human Health: Evidence for Revisiting Radiation Protection Policies

  • Chapter
  • First Online:
Handbook on Radiation Environment, Volume 1
  • 54 Accesses

Abstract

The impact of low-dose ionizing radiation exposures on human health has involved extensive debate over the past few decades. Despite accumulating evidence indicating the absence of observable adverse health effects at low doses and low-dose rates, the prevailing influence of the “Linear No-Threshold” hypothesis persists, dictating radiation protection principles and regulatory frameworks. This conservative approach overlooks the intricate biological processes transpiring within the human body. This comprehensive chapter consolidates current research, exploring the diverse biological pathways and repair mechanisms that hinder the development of adverse effects linked to low doses and low-dose rates of ionizing radiation. Acknowledging these intricate processes becomes imperative, prompting a reassessment of current radiation protection policies. The current stringent measures not only result in unwarranted economic losses but also contribute to a negative public perception of radiation. Considering the prosperity of evidence demonstrating the body's capacity to mitigate deleterious effects at low radiation levels, there is a compelling argument for revisiting and refining existing policies. An approach that is more refined and well balanced, grounded in a comprehensive understanding of biological responses, has the potential to promote both effective radiation protection and instill confidence among the public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem [mostly] solved. Geol Soc Lond Spec Publ 190(1):205–221

    Article  Google Scholar 

  2. Atri D, Melott AL (2014) Cosmic rays and terrestrial life: a brief review. Astropart Phys 53:186–190

    Article  ADS  Google Scholar 

  3. Monteith J, Unsworth M (2013) Principles of environmental physics: plants, animals, and the atmosphere. Academic Press

    Google Scholar 

  4. De Ruysscher D, Faivre-Finn C, Le Pechoux C, Peeters S, Belderbos J (2014) High-dose re-irradiation following radical radiotherapy for non-small-cell lung cancer. Lancet Oncol 15(13):e620–e624

    Article  Google Scholar 

  5. Christodouleas JP, Forrest RD, Ainsley CG, Tochner Z, Hahn SM, Glatstein E (2011) Short-term and long-term health risks of nuclear-power-plant accidents. N Engl J Med 364(24):2334–2341

    Article  Google Scholar 

  6. Jia C, Wang Q, Yao X, Yang J (2021) The role of DNA damage induced by low/high dose ionizing radiation in cell carcinogenesis. Explor Res Hypothesis Med 6(4):177–184

    Google Scholar 

  7. Fry RM (2001) Deterministic effects. Health Phys 80(4):338–343

    Article  Google Scholar 

  8. Shamoun DY (2016) Linear no-threshold model and standards for protection against radiation. Regul Toxicol Pharmacol 77:49–53

    Article  Google Scholar 

  9. Calabrese EJ (2022) Linear Non-Threshold [LNT] historical discovery milestones. La Medicina del Lavoro 113(4)

    Google Scholar 

  10. Cui J, Yang G, Pan Z, Zhao Y, Liang X, Li W, Cai L (2017) Hormetic response to low-dose radiation: focus on the immune system and its clinical implications. Int J Mol Sci 18(2):280

    Article  Google Scholar 

  11. Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR (2019) Re-evaluation of the linear no-threshold [LNT] model using new paradigms and modern molecular studies. Chem Biol Interact 301:54–67

    Article  Google Scholar 

  12. Wakeford R, Tawn EJ (2010) The meaning of low dose and low dose-rate. J Radiol Prot: Off J Soc Radiol Prot 30(1):1–3

    Article  ADS  Google Scholar 

  13. Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Vañó E, Einstein AJ, Geiger B, Heintz P, Padovani RJIP, Sim KH (2011) International commission on radiological protection. ICRP Publ 120:1–125

    Google Scholar 

  14. McMahon SJ (2018) The linear quadratic model: usage, interpretation and challenges. Phys Med Biol 64(1):01TR01

    Google Scholar 

  15. Wakeford R, Azizova T, Dörr W, Garnier-Laplace J, Hauptmann M, Ozasa K, Rajaraman P, Sakai K, Salomaa S, Sokolnikov M, Stram D (2019) The dose and dose-rate effectiveness factor [DDREF]. Health Phys 116(1):96–99

    Article  Google Scholar 

  16. Jacob P, Rühm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Is cancer risk of radiation workers larger than expected? Occup Environ Med 66(12):789–796

    Article  Google Scholar 

  17. Elisabeth C (2005) Commentary on information that can be drawn from studies of areas with high levels of natural radiation. In: International congress series, vol 1276. Elsevier, pp 118–123

    Google Scholar 

  18. Calabrese EJ (2021) LNT and cancer risk assessment: Its flawed foundations part 1: radiation and leukemia: Where LNT began. Environ Res 197:111025

    Article  Google Scholar 

  19. Muller HJ (1928) The measurement of gene mutation rate in Drosophila, its high variability, and its dependence upon temperature. Genetics 13(4):279

    Article  Google Scholar 

  20. Spencer WP, Stern C (1948) Experiments to test the validity of the linear r-dose/mutation frequency relation in Drosophila at low dosage. Genetics 33(1):43

    Article  Google Scholar 

  21. Nair RRK, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T (2009) Background radiation and cancer incidence in Kerala, India—Karanagappally cohort study. Health Phys 96(1):55–66

    Article  Google Scholar 

  22. Hendry JH, Simon SL, Wojcik A, Sohrabi M, Burkart W, Cardis E, Laurier D, Tirmarche M, Hayata I (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks? J Radiol Prot 29(2A):A29

    Article  Google Scholar 

  23. Yuan Y, Shen H (1995) Recent advances of dosimetry investigation in the high background radiation area in Yangjiang, China. Chin J Radiol Med Prot 15(5):311–316

    Google Scholar 

  24. Sohrabi M, Esmaili AR (2002) New public dose assessment of elevated natural radiation areas of Ramsar [Iran] for epidemiological studies. In: International congress series, vol 1225. Elsevier, pp 15–24

    Google Scholar 

  25. Sohrabi M, Babapouran M (2005) New public dose assessment from internal and external exposures in low-and elevated-level natural radiation areas of Ramsar, Iran. In: International congress series, vol 1276. Elsevier, pp 169–174

    Google Scholar 

  26. Eisenbud M, Gesell TF (1997) Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources. Elsevier

    Google Scholar 

  27. Otoo F, Darko EO, Garavaglia M, Giovani C, Pividore S, Andam AB, Amoako JK, Adukpo OK, Inkoom S, Adu S (2018) Public exposure to natural radioactivity and radon exhalation rate in construction materials used within Greater Accra Region of Ghana. Sci Afr 1:e00009

    Google Scholar 

  28. Thampi MV, Cheriyan VD, Kurien CJ, Ramachandran EN, Karuppasamy CV, Koya PKM, Das B, George KP, Rajan VK, Chauhan PS (2002) Cytogenetic studies in the high-level natural radiation areas of Kerala. In: International congress series, vol 1225. Elsevier, pp 207–211

    Google Scholar 

  29. Zou J, Tao Z, Sun Q, Akiba S, Zha Y, Sugahara T, Wei L (2005) Cancer and non-cancer epidemiological study in the high background radiation area of Yangjiang, China. In: International congress series, vol 1276. Elsevier, pp 97–101

    Google Scholar 

  30. Sun Q, Carr Z (2005) Summary of HBRA epidemiological studies. In: International congress series, vol 1276. Elsevier, pp 147–150

    Google Scholar 

  31. Ahuja YR, Sharma A, Nampoothiri KUK, Ahuja MR, Dempster ER (1973) Evaluation of effects of high natural background radiation on some genetic traits in the inhabitants of monazite belt in Kerala, India. Hum Biol 167–179

    Google Scholar 

  32. Aliyu AS, Ramli AT (2015) The world’s high background natural radiation areas [HBNRAs] revisited: a broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat Meas 73:51–59

    Article  Google Scholar 

  33. Cheriyan VD, Kurien CJ, Das B, Ramachandran EN, Karuppasamy CV, Thampi MV, George KP, Kesavan PC, Koya PKM, Chauhan PS (1999) Genetic monitoring of the human population from high-level natural radiation areas of Kerala on the southwest coast of India. II. Incidence of numerical and structural chromosomal aberrations in the lymphocytes of newborns. Radiat Res 152(6s): S154–S158

    Google Scholar 

  34. Das B, Karuppasamy CV (2009) Spontaneous frequency of micronuclei among the newborns from high level natural radiation areas of Kerala in the southwest coast of India. Int J Radiat Biol 85(3):272–280

    Article  Google Scholar 

  35. Das B, Saini D, Seshadri M (2009) Telomere length in human adults and high-level natural background radiation. PLoS ONE 4(12):e8440

    Article  ADS  Google Scholar 

  36. JoJo PJ, Khandaker MU, Byju SB, Sunil A, Emran TB, Osman H, Almalki M, Alhumaydhi FA, Alghamdi S, Babalghith AO (2022) Study of certain congenital malformations due to low-level radiation exposures from high background radiation areas. J King Saud Univ-Sci 34(6):102166

    Article  Google Scholar 

  37. Jain V, Saini D, Soren DC, Kumar VA, Vivek Kumar PR, Koya PKM, Jaikrishan G, Das B (2023) Non-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coast. Genes Environ 45(1):16

    Article  Google Scholar 

  38. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60

    Article  Google Scholar 

  39. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. In: Oxidative medicine and cellular longevity

    Google Scholar 

  40. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    Article  Google Scholar 

  41. Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci 110(14):5294–5300

    Article  ADS  Google Scholar 

  42. Brenner DJ (1990) Track structure, lesion development, and cell survival. Radiat Res 124(1s):S29–S37

    Article  ADS  Google Scholar 

  43. Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263

    Article  Google Scholar 

  44. Mota MBS, Carvalho MA, Monteiro AN, Mesquita RD (2019) DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 12(1):1–20

    Article  Google Scholar 

  45. Moraes MCS, Neto JBC, Menck CFM (2012) DNA repair mechanisms protect our genome from carcinogenesis. Front Biosci-Landmark 17(4):1362–1388

    Article  Google Scholar 

  46. Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10):4839

    Article  Google Scholar 

  47. He J, Xiong X, Yang H, Li D, Liu X, Li S, Liao S, Chen S, Wen X, Yu K, Fu L (2022) Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Res 32(6):530–542

    Article  Google Scholar 

  48. Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21(4):687–692

    Article  Google Scholar 

  49. Solary E, Laplane L (2020) The role of host environment in cancer evolution. Evol Appl 13(7):1756–1770

    Article  Google Scholar 

  50. Dauer LT, Brooks AL, Hoel DG, Morgan WF, Stram D, Tran P (2010) Review and evaluation of updated research on the health effects associated with low-dose ionising radiation. Radiat Prot Dosimetry 140(2):103–136

    Article  Google Scholar 

  51. Guéguen Y, Bontemps A, Ebrahimian TG (2019) Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 76:1255–1273

    Article  Google Scholar 

  52. Luckey TD (2020) Radiation hormesis. CRC Press

    Book  Google Scholar 

  53. Ghiassi-Nejad M, Zakeri F, Assaei RG, Kariminia AMINA (2004) Long-term immune and cytogenetic effects of high-level natural radiation on Ramsar inhabitants in Iran. J Environ Radioact 74(1–3):107–116

    Article  Google Scholar 

  54. Su S, Zhou S, Wen C, Zou J, Zhang D, Geng J, Yang M, Liu M, Li L, Wen W (2018) Evidence for adaptive response in a molecular epidemiological study of the inhabitants of a high background-radiation area of Yangjiang, China. Health Phys 115(2):227–234

    Article  Google Scholar 

  55. Bakhtiari E, Monfared AS, Niaki HA, Borzoueisileh S, Niksirat F, Fattahi S, Monfared MK, Gorji KE (2019) The expression of MLH1 and MSH2 genes among inhabitants of high background radiation area of Ramsar, Iran. J Environ Radioact 208:106012

    Article  Google Scholar 

  56. Talebian H, Monfared AS, Niaki HA, Fattahi S, Bakhtiari E, Changizi V (2020) Investigating the expression level of NF-KB and HIF1A genes among the inhabitants of two different background radiation areas in Ramsar, Iran. J Environ Radioact 220:106292

    Article  Google Scholar 

  57. Ramadhani D, Purnami S, Tetriana D, Sugoro I, Suvifan VA, Rahadjeng N, Wanandi SI, Wibowo H, Kashiwakura I, Miura T, Syaifudin M (2022) Chromosome aberrations, micronucleus frequency, and catalase concentration in a population chronically exposed to high levels of radon. Int J Radiat Biol 1–16

    Google Scholar 

  58. Pollycove M (1998) Nonlinearity of radiation health effects. Environ Health Perspect 106(suppl 1):363–368

    Article  Google Scholar 

  59. Vaiserman A, Koliada A, Zabuga O, Socol Y (2018) Health impacts of low-dose ionizing radiation: current scientific debates and regulatory issues. Dose-Response 16(3):1559325818796331

    Article  Google Scholar 

  60. Lliakis G (1991) The role of DNA double strand breaks in lonizing radiation-induced killing of eukaryotic cells. BioEssays 13(12):641–648

    Article  Google Scholar 

  61. Lomax ME, Folkes LK, O’neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 25(10):578–585

    Article  Google Scholar 

  62. Chen SL, Cai L, Meng QY, Xu S, Wan H, Liu SZ (2000) Low-dose whole-body irradiation [LD-WBI] changes protein expression of mouse thymocytes: effect of a LD-WBI-enhanced protein RIP10 on cell proliferation and spontaneous or radiation-induced thymocyte apoptosis. Toxicol Sci 55(1):97–106

    Article  Google Scholar 

  63. Li W, Wang G, Cui J, Xue L, Cai L (2004) Low-dose radiation [LDR] induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp Hematol 32(11):1088–1096

    Article  Google Scholar 

  64. Wang GJ, Cai L (2000) Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci 53(2):369–376

    Article  Google Scholar 

  65. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, Cai L, Li W (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res 52(3):380–386

    Article  Google Scholar 

  66. Wei LC, Ding YX, Liu YH, Duan L, Bai Y, Shi M, Chen LW (2012) Low-dose radiation stimulates Wnt/β-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo. Curr Alzheimer Res 9(3):278–289

    Article  Google Scholar 

  67. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):1–22

    Article  Google Scholar 

  68. Serrano Martinez P, Giuranno L, Vooijs M, Coppes RP (2021) The radiation-induced regenerative response of adult tissue-specific stem cells: models and signaling pathways. Cancers 13(4):855

    Article  Google Scholar 

  69. Guo WY, Wang GJ, Wang P, Chen Q, Tan Y, Cai L (2010) Acceleration of diabetic wound healing by low-dose radiation is associated with peripheral mobilization of bone marrow stem cells. Radiat Res 174(4):467–479

    Article  ADS  Google Scholar 

  70. Le Gal K, Schmidt EE, Sayin VI (2021) Cellular redox homeostasis. Antioxidants 10(9):1377

    Article  Google Scholar 

  71. Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG (2022) Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2(2):48–78

    Article  Google Scholar 

  72. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. In: Oxidative medicine and cellular longevity

    Google Scholar 

  73. de Toledo SM, Asaad N, Venkatachalam P, Li L, Howell RW, Spitz DR, Azzam EI (2006) Adaptive responses to low-dose/low-dose-rate γ rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 166(6):849–857

    Article  ADS  Google Scholar 

  74. Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rödel C, Weiss C, Rödel F (2015) Study of the anti-inflammatory effects of low-dose radiation. Strahlenther Onkol 191(9):742–749

    Article  Google Scholar 

  75. Lee EK, Kim JA, Park SJ, Kim JK, Heo K, Yang KM, Son TG (2013) Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells. BMB Rep 46(5):258

    Article  Google Scholar 

  76. Fan M, Ahmed KM, Coleman MC, Spitz DR, Li JJ (2007) Nuclear factor-κB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Can Res 67(7):3220–3228

    Article  Google Scholar 

  77. Yanxiao G, Mei T, Gang G, Xiaochun W, Jianxiang L (2019) Changes of 8-OHdG and TrxR in the residents who bathe in radon hot springs. Dose-Response 17(1):1559325818820974

    Article  Google Scholar 

  78. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2):S3–S23

    Article  Google Scholar 

  79. Marshall JS, Warrington R, Watson W, Kim HL (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14(2):1–10

    Google Scholar 

  80. Silverstein AM (2009) A history of immunology. Academic Press

    Google Scholar 

  81. Paul WE (2012) Fundamental immunology. Lippincott Williams & Wilkins

    Google Scholar 

  82. Manda K, Glasow A, Paape D, Hildebrandt G (2012) Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol 2:102

    Article  Google Scholar 

  83. Kayser MS, Dalmau J (2011) The emerging link between autoimmune disorders and neuropsychiatric disease. J Neuropsychiatry Clin Neurosci 23(1):90–97

    Article  Google Scholar 

  84. Lee DS, Rojas OL, Gommerman JL (2021) B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discovery 20(3):179–199

    Article  Google Scholar 

  85. Schaue D, Kachikwu EL, McBride WH (2012) Cytokines in radiobiological responses: a review. Radiat Res 178(6):505–523

    Article  ADS  Google Scholar 

  86. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Google Scholar 

  87. Chen J, Liu X, Zeng Z, Li J, Luo Y, Sun W, Gong Y, Zhang J, Wu Q, Xie C (2020) Immunomodulation of NK cells by ionizing radiation. Front Oncol 10:874

    Article  Google Scholar 

  88. Daguenet E, Louati S, Wozny AS, Vial N, Gras M, Guy JB, Vallard A, Rodriguez-Lafrasse C, Magné N (2020) Radiation-induced bystander and abscopal effects: Important lessons from preclinical models. Br J Cancer 123(3):339–348

    Article  Google Scholar 

  89. Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68

    Article  Google Scholar 

  90. Shigematsu A, Adachi Y, Koike-Kiriyama N, Suzuki Y, Iwasaki M, Koike Y, Nakano K, Mukaide H, Imamura M, Ikehara S (2007) Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J Radiat Res 48(1):51–55

    Article  Google Scholar 

  91. Mosser DM, Hamidzadeh K, Goncalves R (2021) Macrophages and the maintenance of homeostasis. Cell Mol Immunol 18(3):579–587

    Article  Google Scholar 

  92. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462

    Article  Google Scholar 

  93. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Google Scholar 

  94. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):1–16

    Article  Google Scholar 

  95. De Palma M, Coukos G, Hanahan D (2013) A new twist on radiation oncology: low-dose irradiation elicits immunostimulatory macrophages that unlock barriers to tumor immunotherapy. Cancer Cell 24(5):559–561

    Article  Google Scholar 

  96. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K (2013) Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602

    Article  Google Scholar 

  97. Lm C (2002) Inflammation and cancer. Nature 420:860–867

    Article  Google Scholar 

  98. Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B (2020) Organ-specific effects of low dose radiation exposure: a comprehensive review. Front Genet 11:566244

    Article  Google Scholar 

  99. He Z, Ma C, Yu T, Song J, Leng J, Gu X, Li J (2019) Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury. Exp Cell Res 376(2):227–235

    Article  Google Scholar 

  100. Betlazar C, Middleton RJ, Banati RB, Liu GJ (2016) The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 9:144–156

    Article  Google Scholar 

  101. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2):S33–S40

    Article  Google Scholar 

  102. Smith DA, Germolec DR (1999) Introduction to immunology and autoimmunity. Environ Health Perspect 107(suppl 5):661–665

    Article  Google Scholar 

  103. Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241(1):104–118

    Article  Google Scholar 

  104. Gyuleva I, Djounova J, Rupova I (2018) Impact of low-dose occupational exposure to ionizing radiation on T-Cell populations and subpopulations and humoral factors included in the immune response. Dose-Response 16(3):1559325818785564

    Article  Google Scholar 

  105. Cao M, Cabrera R, Xu Y, Liu C, Nelson D (2011) Different radiosensitivity of CD4+ CD25+ regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int J Radiat Biol 87(1):71–80

    Article  Google Scholar 

  106. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers 11(10):1618

    Article  Google Scholar 

  107. Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rödel C (2012) Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol 2:32384

    Article  Google Scholar 

  108. Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D (2021) Low dose ionizing radiation effects on the immune system. Environ Int 149:106212

    Article  Google Scholar 

  109. Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H (2022) Role of low-dose radiation in senescence and aging: a beneficial perspective. Life Sci 302:120644

    Article  Google Scholar 

  110. Rho HS, Park SS, Lee CE (2004) Gamma irradiation up-regulates B cell differentiation antigen CD23 in human B cells by NF-κB activation. J Biochem Mol Biol 37(4):507–514

    Google Scholar 

  111. Lall R, Ganapathy S, Yang M, Xiao S, Xu T, Su H, Shadfan M, Asara JM, Ha CS, Ben-Sahra I, Manning BD (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21(5):836–844

    Article  Google Scholar 

  112. Abdel Meguid MH, Hamad YH, Swilam RS, Barakat MS (2013) Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int 33:697–703

    Article  Google Scholar 

  113. Kim JS, Son Y, Bae MJ, Lee SS, Park SH, Lee HJ, Lee SI, Lee CG, Kim SD, Jo WS, Kim SH (2015) Continuous exposure to low-dose-rate gamma irradiation reduces airway inflammation in ovalbumin-induced asthma. PLoS ONE 10(11):e0143403

    Article  Google Scholar 

  114. Valledor AF, Comalada M, Santamaría-Babi LF, Lloberas J, Celada A (2010) Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol 108:1–20

    Article  Google Scholar 

  115. Liu S, Sun X, Luo J, Zhu H, Yang X, Guo Q, Song Y, Sun X (2015) Effects of radiation on T regulatory cells in normal states and cancer: mechanisms and clinical implications. Am J Cancer Res 5(11):3276

    Google Scholar 

  116. Khan MGM, Wang Y (2022) Advances in the current understanding of how low-dose radiation affects the cell cycle. Cells 11(3):356

    Article  Google Scholar 

  117. Kendall GM, Muirhead CR, MacGibbon BH, O’Hagan JA, Conquest AJ, Goodill AA, Butland BK, Fell TP, Jackson DA, Webb MA (1992) Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ 304(6821):220–225

    Article  Google Scholar 

  118. Park SH, Lee Y, Jeong K, Yoo SY, Cho CK, Lee YS (1999) Different induction of adaptive response to ionizing radiation in normal and neoplastic cells. Cell Biol Toxicol 15:111–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Sapra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaurasia, R.K., Sapra, B.K. (2024). Effects of Low Dose Ionizing Radiation on Human Health: Evidence for Revisiting Radiation Protection Policies. In: Aswal, D.K. (eds) Handbook on Radiation Environment, Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-97-2795-7_14

Download citation

Publish with us

Policies and ethics