Skip to main content
  • 23 Accesses

Abstract

Biomaterials are materials that exhibit a high level of biocompatibility and are designed to interact with biological systems in a variety of ways, such as tissues, organs, cells, and molecules. Biomaterials can be classified into: (i) natural (e.g. collagen, chitosan, dextran, and silk), offer inherent biocompatibility and bioactivity and: (ii) synthetic (e.g. polypropylene, polyurethanes, metals), provide the advantage of precise control over material properties, allowing for customization based on specific applications. For tissue engineering, drug delivery, and other biomedical applications, natural polymers based on proteins and polysaccharides show a lot of promise. Mammalian-derived polymers are preferred over non-mammalian sources because they have a multitude of physiologically active designs and favourable host-material responses. Compared to mammalian collagen, marine collagen (MC), which comes from marine organisms, has excellent physical and chemical robustness, and is readily available in huge amounts. In recent years, tissue engineering and regenerative medicine opt for collagen-based materials over other types of biomaterials on account of their high biocompatibility, low immunogenicity, and structural versatility. This chapter discusses the significance and classification of biomaterials; protein-based and polysaccharide-based biomaterials and the application biomaterials with a special focus on marine-derived collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MJ, Hameed BH, Hummadi EH (2020) Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr Polym 247:116690

    Article  CAS  PubMed  Google Scholar 

  • Anraku M, Fujii T, Kondo Y, Kojima E, Hata T, Tabuchi N et al (2011) Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo. Carbohydr Polym 83(2):501–505

    Article  CAS  Google Scholar 

  • Aszódi A, Legate KRN, Fässler I, R. (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22:591–621

    Article  PubMed  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633

    Article  CAS  PubMed  Google Scholar 

  • Basa S, Nampally M, Honorato T, Das SN, Podile AR, El Gueddari NE, Moerschbacher BM (2020) The pattern of acetylation defines the priming activity of chitosan tetramers. J Am Chem Soc 142(4):1975–1986

    Article  CAS  PubMed  Google Scholar 

  • Bello AB, Kim D, Kim D, Park H, Lee SH (2020) Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev 26(2):164–180

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai DP, Aguilar LE, Park CH, Kim CS (2018) A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes 8(3):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlström IE, Rashad A, Campodoni E, Sandri M, Syverud K, Bolstad AI, Mustafa K (2020) Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering. Mater Lett 264:127326

    Article  Google Scholar 

  • Chang SH, Wu CH, Tsai GJ (2018) Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym 181:1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  CAS  PubMed  Google Scholar 

  • Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J Agric Food Chem 46(9):3839–3843

    Article  CAS  Google Scholar 

  • Choi SM, Chaudhry P, Zo SM, Han SS (2018) Advances in protein-based materials: from origin to novel biomaterials. In: Cutting-edge enabling technologies for regenerative medicine, pp 161–210

    Chapter  Google Scholar 

  • Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D (2020) Marine collagen from alternative and sustainable sources: extraction, processing and applications. Mar Drugs 18(4):214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui B, Zhang C, Gan B, Liu W, Liang J, Fan Z, Zhou Y (2020) Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote skin wound repair in rats. Mater Sci Eng C 109:110611

    Article  CAS  Google Scholar 

  • de Alvarenga ES, de Oliveira CP, Bellato CR (2010) An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym 80(4):1155–1160

    Article  Google Scholar 

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC 9(1):1–10

    Google Scholar 

  • Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8(2):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghomi F, Daliri M, Godarzi V, Hemati M (2021) A novel investigation on the characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. J Nanoanalysis 8(4):292–301

    Google Scholar 

  • Han Y, Jiang Y, Hu J (2020) Tea-polyphenol treated skin collagen owns coalesced adaptive-hydration, tensile strength and shape-memory property. Int J Biol Macromol 158:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hashmi MP, Koester TM (2018) Applications of synthetically produced materials in clinical medicine. In: Reference module in materials science and materials engineering. Elsevier. (in press). https://doi.org/10.1016/B978-0-12-803581-8.10258-9

    Chapter  Google Scholar 

  • Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22(22):2959–2966

    Article  CAS  PubMed  Google Scholar 

  • Hu CH, Yao CH, Chan TM, Huang TL, Sen Y, Huang CY, Ho CY (2016) Effects of different concentrations of collagenous peptide from fish scales on osteoblast proliferation and osteoclast resorption. Chin J Physiol 59:191–201

    Article  CAS  PubMed  Google Scholar 

  • Inamdar NN, Mourya V (2014) Chitosan and low molecular weight chitosan: biological and biomedical applications. Adv Biomater Biodev:183–242

    Google Scholar 

  • Islam S, Bhuiyan MR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866

    Article  CAS  Google Scholar 

  • Jankangram W, Chooluck S, Pomthong B (2016) Comparison of the properties of collagen extracted from dried jellyfish and dried squid. Afr J Biotechnol 15(16):642–648

    Article  CAS  Google Scholar 

  • Joyce K, Fabra GT, Bozkurt Y, Pandit A (2021) Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 6(1):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarek B, Sionkowska A (2018) Chitosan/collagen blends with inorganic and organic additive—a review. Adv Polym Technol 37(6):2367–2376

    Article  CAS  Google Scholar 

  • Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B (2009). Nanocellulose materials–different cellulose, different functionality. In: Macromolecular symposia, vol 280, no 1. Wiley-VCH Verlag, Weinheim, pp 60–71

    Google Scholar 

  • Kumari S, Annamareddy SHK, Abanti S, Rath PK (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 104:1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Lum N, Seow LY, Lim PQ, Tan LP (2016) Synthesis and characterization of types A and B gelatinmethacryloyl for bioink applications. Materials 9(10):797

    Article  PubMed  PubMed Central  Google Scholar 

  • Letchford K, Södergard A, Plackett D, Gilchrist SE, Burt HM (2011) Lactide and glycolide polymers. In: Biodegradable polymers in clinical use and clinical development, pp 317–365

    Chapter  Google Scholar 

  • Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, O'Brien FJ (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87:69–81

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cao H, Xu Y, Li X, Han X, Fan Y, Zhang X (2021) Bioinspired polysaccharide hybrid hydrogel promoted recruitment and chondrogenic differentiation of bone marrow mesenchymal stem cells. Carbohydr Polym 267:118224

    Article  CAS  PubMed  Google Scholar 

  • Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17(8):467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Liu D, Zhou P, Li T, Regenstein JM (2014) Comparison of acid-soluble collagens from the skins and scales of four carp species. Food Hydrocoll 41:290–297

    Article  Google Scholar 

  • Liu X, Zheng C, Luo X, Wang X, Jiang H (2019) Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C 99:1509–1522

    Article  CAS  Google Scholar 

  • Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY et al (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res Int 2014:654913

    Article  PubMed  PubMed Central  Google Scholar 

  • Magadala P, Amiji M (2008) Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. Am Assoc Pharm Scient J 10:565–576

    CAS  Google Scholar 

  • Matsumoto R, Uemura T, Xu Z, Yamaguchi I, Ikoma T, Tanaka J (2015) Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 103(8):2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Sevukarajan M, Mohammed T, Badivaddin CK, Kumar A (2010) Collagen based drug delivery systems: a review. J Innov Pharm Sci 1:288–304

    Google Scholar 

  • Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU et al (2019) Chitosan oligosaccharide (COS): an overview. Int J Biol Macromol 129:827-843

    Article  PubMed  Google Scholar 

  • Narayanan D, Geena MG, Lakshmi H, Koyakutty M, Nair S, Menon D (2013) Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug Ibuprofen-Sodium: An in vitro and in vivo analysis. Nanomedicine 9:818–828

    Article  CAS  PubMed  Google Scholar 

  • NIBIB (2023) Biomaterials. National Institute of Biomedical Imaging & Bioengineering, US Department of Health and Human Services. https://www.nibib.nih.gov/science-education/science-topics/biomaterials

  • No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—a review. J Aqua Food Product Technol 4(2):27–52

    Article  CAS  Google Scholar 

  • Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1(4):730–738

    Article  CAS  PubMed  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-Based Biomaterials for Tissue Engineering Applications. Materials (Basel) 16;3(3):1863–87

    Google Scholar 

  • Prang P, Müller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27(19):3560–3569

    CAS  PubMed  Google Scholar 

  • Rasweefali MK, Sabu S, Sunooj K, Sasidharan A, Xavier KM (2021) Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydr Polym Technol Appl 2:100032

    CAS  Google Scholar 

  • Rasweefali MK, Sabu S, Azad KM, Rahman MR, Sunooj KV, Sasidharan A, Anoop KK (2022) Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from deep-sea mud shrimp (Solenocerahextii). Adv Biomarker Sci Technol 4:12–27

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    Article  CAS  Google Scholar 

  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:1–15

    Article  Google Scholar 

  • Sabu S, Sasidharan A, Venugopal V (2022) Influence of isolation conditions on the physicochemical and biological properties of chitosan and chitosan oligosaccharides from marine crustacean shell wastes. In: Chitooligosaccharides: prevention and control of diseases. Springer International Publishing, Cham, pp 333–352

    Chapter  Google Scholar 

  • Schlotmann K, Kaeten M, Black AF, Damour O, Waldmann-Laue M, Förster T (2001) Cosmetic efficacy claims in vitro using a three-dimensional human skin model. Int J Cosmet Sci 23(5):309–318

    Article  CAS  PubMed  Google Scholar 

  • Sharip NS, Ariffin H (2019) Cellulose nanofibrils for biomaterial applications. Mater Today Proc 16(4):1959–1968

    Article  CAS  Google Scholar 

  • Sharkawy A, Barreiro MF, Rodrigues AE (2021) New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 616:126327

    Article  CAS  Google Scholar 

  • Shirvan AR, Shakeri M, Bashari A (2019) Recent advances in application of chitosan and its derivatives in functional finishing of textiles. In: The impact and prospects of green chemistry for textile technology. Elsevier, pp 107–133

    Google Scholar 

  • Singh BN, Pramanik K (2018) Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. J Biomater Sci Polym Ed 29(16):2011–2034

    Article  CAS  PubMed  Google Scholar 

  • Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25(5):795–801

    Article  CAS  PubMed  Google Scholar 

  • Sionkowska A, Kaczmarek B, Michalska M, Lewandowska K, Grabska S (2017) Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics. Pure Appl Chem 89(12):1829–1839

    Article  CAS  Google Scholar 

  • Sionkowska A, Lewandowska K, Kurzawa M (2023) Chitosan-based films containing rutin for potential cosmetic applications. Polymers 15(15):3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering. Butterworth-Heinemann

    Google Scholar 

  • Sood A, Gupta A, Bharadwaj R, Ranganath P, Silverman N, Agrawal G (2022) Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym 294:119833

    Article  CAS  PubMed  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Liu W, Wu Z, Chen H (2020) Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol Rapid Commun 41(8):1900430

    Article  CAS  Google Scholar 

  • Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A, Jozefiak D (2015) Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J Anim Physiol Anim Nutr 99(1):1–12

    Article  CAS  Google Scholar 

  • Tarafder S, Lee CH (2016) Synovial joint: in situ regeneration of osteochondral and fibrocartilaginous tissues by homing of endogenous cells. In: In situ tissue regeneration. Academic Press, pp 253–273

    Chapter  Google Scholar 

  • Tekale SU, Kanagare AB, Dhirbassi AV, Domb AJ, Pawar RP (2022) Polysaccharide-based biomaterials: overview, Biomaterials science series. Royal Society of Chemistry, p 580

    Google Scholar 

  • Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M (2007) Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study. Biomacromolecules 8(3):825–832

    Article  CAS  PubMed  Google Scholar 

  • Troy E, Tilbury MA, Power AM, Wall JG (2021) Nature-based biomaterials and their application in biomedicine. Polymers 13(19):3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah S, Chen X (2020) Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl Mater Today 20:100656

    Article  Google Scholar 

  • Van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21(13–14):1400–1408

    Article  PubMed  Google Scholar 

  • Wang Q, Li X, Wang P, Yao Y, Xu Y, Chen Y, Zhang X (2020) Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage. J Mater Chem B 8(20):4402–4411

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY et al (2021) Marine-derived collagen as biomaterials for human health. Front Nutr 8:702108

    Article  PubMed  PubMed Central  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117

    Article  CAS  Google Scholar 

  • Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioactive Mater 3(1):129–138

    Article  Google Scholar 

  • Zheng Z, Li M, Shi P, Gao Y, Ma J, Li Y, Yang L (2021) Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: a one-step strategy. Bioactive Mater 6(8):2613–2628

    Article  CAS  Google Scholar 

  • Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Li Z, Zou Y, Lu G, Ronca A, D’Amora U, Liang J, Fan Y, Zhang, Sun, Y (2022) Advanced application of collagen-based biomaterials in tissue repair and restoration. Journal of Leather Science and Engineering 4(30)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabu, S. (2024). Biomaterials. In: Raman, M., Sasidharan, A., Sabu, S., Rajan, D.P. (eds) Fish Structural Proteins and its Derivatives: Functionality and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-2562-5_8

Download citation

Publish with us

Policies and ethics