Skip to main content

Nanoparticles to Abate Antibiotic Resistance During the Management of Dental Diseases

  • Chapter
  • First Online:
Nanotechnology Based Strategies for Combating Antimicrobial Resistance

Abstract

The intensive use or inappropriate selection of systemic antibiotic therapy is identified as a significant factor in the development of antibiotic-resistant bacterial strains. Antibiotic-resistant bacterial species are associated with a more aggressive disease process, poorer responses to therapy and demonstrate potential for increasing mortality rates. When bacteria become resistant to antibiotics, they oppose the activity of a particular antimicrobial agent to which it was previously susceptible. Increasing attention is being directed towards the management of antibiotic-resistant bacteria. In dentistry, nanoparticle (NP)-based treatments present great promise for treating antibiotic-resistant strains. NP-based antimicrobials have demonstrated their efficacy against both planktonic and biofilm infections. Nanostructured materials can be utilized for carrying antimicrobials, aid in the delivery of novel drugs, and may even have antimicrobial activity on their own. NPs such as silver (Ag) NPs, metal oxides (MeOs), bimetallic NPs, zinc oxide, iron oxide, copper oxide, etc. have a potential toward drug resistance mechanisms in bacteria, inhibit biofilm formation or other important processes. Other approaches, such as combining plant-based antimicrobials and NPs to overcome toxicity issues, are being researched. This approach is also effective in inhibiting bacterial efflux pumps potential, formation of biofilms, interference of quorum sensing, and possibly plasmid curing. In this chapter, we will highlight present developments on NPs used to combat multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adebayo-Tayo B, Salaam A, Ajibade A (2019) Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5(10):e02502

    Article  PubMed  PubMed Central  Google Scholar 

  • Agnihotry A, Thompson W, Fedorowicz Z, van Zuuren EJ, Sprakel J (2019) Antibiotic use for irreversible pulpitis. Cochrane Database Syst Rev 5:CD004969

    PubMed  Google Scholar 

  • Agrawal N, Mishra P, Ranjan R, Awasthi P, Srivastava A, Prasad D, Kohli E (2021) Nano-cubes over nano-spheres: shape dependent study of silver nanomaterial for biological applications. Bull Mater Sci 44(3):191

    Article  CAS  Google Scholar 

  • Ahmadi H, Haddadi-Asl V, Ghafari HA, Ghorbanzadeh R, Mazlum Y, Bahador A (2020) Shear bond strength, adhesive remnant index, and anti-biofilm effects of a photoexcited modified orthodontic adhesive containing curcumin doped poly lactic-co-glycolic acid nanoparticles: an ex-vivo biofilm model of S. mutans on the enamel slab bonded brackets. Photodiagnosis Photodyn Ther 30:101674

    Article  CAS  PubMed  Google Scholar 

  • Akter S, Huq MA (2020) Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artif Cells Nanomed Biotechnol 48(1):672–682

    Article  CAS  PubMed  Google Scholar 

  • Al-Khatib A, AlMohammad RA (2022) Dentists’ habits of antibiotic prescribing may be influenced by patient requests for prescriptions. Int J Dentistry 2022:1

    Article  Google Scholar 

  • Ansari MA, Murali M, Prasad D, Alzohairy MA, Almatroudi A, Alomary MN, Udayashankar AC, Singh SB, Asiri SM, Ashwini BS, Gowtham HG (2020) Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomol Ther 10(2):336

    CAS  Google Scholar 

  • Aranda S (2019) Ten threats to global health in 2019. World Health Organization (WHO), Geneva, pp 1–8

    Google Scholar 

  • Arora N, Thangavelu K, Karanikolos GN (2020) Bimetallic nanoparticles for antimicrobial applications. Front Chem 8:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arul Selvaraj RC, Rajendran M, Nagaiah HP (2019) Re-potentiation of β-lactam antibiotic by synergistic combination with biogenic copper oxide nanocubes against biofilm forming multidrug-resistant bacteria. Molecules 24(17):3055

    Article  PubMed  PubMed Central  Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“a Battle of the titans”. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Barone A, Chatelain S, Derchi G, Di Spirito F, Martuscelli R, Porzio M, Sbordone L (2020) Antibiotic’s effectiveness after erupted tooth extractions: a retrospective study. Oral Dis 26(5):967–973

    Article  PubMed  Google Scholar 

  • Bazzaz BS, Khameneh B, Zarei H, Golmohammadzadeh S (2016) Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb Pathog 93:137–144

    Article  Google Scholar 

  • Benoit DS, Sims KR Jr, Fraser D (2019) Nanoparticles for oral biofilm treatments. ACS Nano 13(5):4869–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat R, Godovikova V, Flannagan SE, Li Y, Seseogullari-Dirihan R, González-Cabezas C, Kuroda K (2022) Targeting cariogenic Streptococcus mutans in oral biofilms with charge-switching smart antimicrobial polymers. ACS Biomater Sci Eng 9(1):318–328

    Article  PubMed  Google Scholar 

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2768–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham CA, Leeds J, Nordmann P, O'Grady J, Patel J (2017) Diagnosing antimicrobial resistance. Nat Rev Microbiol 15(11):697–703

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Grossart HP (2010) Intractable, and here’s why. BMJ 341:c6848

    Article  PubMed  Google Scholar 

  • Chaw KC, Manimaran M, Tay FE (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49(12):4853–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128

    Article  CAS  PubMed  Google Scholar 

  • Cormode DP, Gao L, Koo H (2018) Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol 36(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Das S, Kataria VK (2010) Bioterrorism: a public health perspective. Med J Armed Forces India 66(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zhu H, Shen Y, Zhang W, Zhang L (2019) Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens. PLoS One 14(9):e0222322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM (2015) Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 9(8):7775–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9(11):e111289

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmundson M, Thanh NT, Song B (2013) Nanoparticles based stem cell tracking in regenerative medicine. Theranostics 3(8):573

    Article  PubMed  PubMed Central  Google Scholar 

  • El Sayed MT, El-Sayed AS (2020) Biocidal activity of metal nanoparticles synthesized by Fusarium solani against multidrug-resistant bacteria and mycotoxigenic fungi. J Microbiol Biotechnol 30(2):226

    Article  PubMed  Google Scholar 

  • Escárcega-González CE, Garza-Cervantes JA, Vazquez-Rodríguez A, Montelongo-Peralta LZ, Treviño-Gonzalez MT, Díaz Barriga Castro E, Saucedo-Salazar EM, Chávez Morales RM, Regalado Soto DI, Treviño González FM, Carrazco Rosales JL (2018) In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine 17:2349–2363

    Article  Google Scholar 

  • Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E (2018) Trends towards biomimicry in theranostics. Nanomaterials 8(9):637

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Organ 79:780–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A (2019) Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruct Chem 9:111–117

    Article  CAS  Google Scholar 

  • Gatto F, Bardi G (2018) Metallic nanoparticles: general research approaches to immunological characterization. Nanomaterials 8(10):753

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Therapeut 1(3):1700033

    Article  Google Scholar 

  • Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 10(7):884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibipour R, Moradi-Haghgou L, Farmany A (2019) Green synthesis of AgNPs@ PPE and its Pseudomonas aeruginosa biofilm formation activity compared to pomegranate peel extract. Int J Nanomedicine 14:6891–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443

    Article  CAS  PubMed  Google Scholar 

  • Halwani AA (2022) Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics 14(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin MR (2018) Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci 17(11):1515–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9(1):13071

    Article  PubMed  PubMed Central  Google Scholar 

  • Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS (2015) pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9(3):2390–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, Hossain S, Hasan MA, Takeoka S, Sarker SR (2019) Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics. Front Bioeng Biotechnol 7:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Saravanakumar K, Jin T, Wang MH (2019) Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int J Nanomedicine 14:3427–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Huq MA (2020) Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int J Mol Sci 21(4):1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ (2014) Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine 9:3801–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iafisco M, Degli Esposti L, Ramírez-Rodríguez GB, Carella F, Gómez-Morales J, Ionescu AC, Brambilla E, Tampieri A, Delgado-López JM (2018) Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Sci Rep 8(1):17016

    Article  PubMed  PubMed Central  Google Scholar 

  • Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S (2017) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activity. Trop J Pharm Res 16(4):743–753

    Article  CAS  Google Scholar 

  • Inoue H, Minghui R (2017) Antimicrobial resistance: translating political commitment into national action. Bull World Health Organ 95(4):242

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8(1):374–386

    Article  CAS  PubMed  Google Scholar 

  • Jagtap P, Sritharan V, Gupta S (2017) Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomedicine 13(1):329–341

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri J, Raichura Z, Khan T, Momin M, Omri A (2021) Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 26(2):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1

    Article  Google Scholar 

  • Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. JOM 58:77–82

    Article  CAS  Google Scholar 

  • Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681

    Article  CAS  PubMed  Google Scholar 

  • Lagarce F (2015) Nanomedicines: are we lost in translation? Eur J Nanomed 7(2):77–78

    Article  Google Scholar 

  • Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10(6):1171–1183

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yeh YC, Giri K, Mout R, Landis RF, Prakash YS, Rotello VM (2015) Control of nanoparticle penetration into biofilms through surface design. Chem Commun 51(2):282–285

    Article  CAS  Google Scholar 

  • Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Weir MD, Oates TW, Li J (2019) Dental remineralization via poly (amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci 11(2):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446

    Article  CAS  PubMed  Google Scholar 

  • Loza K, Heggen M, Epple M (2020) Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv Funct Mater 30(21):1909260

    Article  CAS  Google Scholar 

  • Malaekeh-Nikouei B, Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B (2020) The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Deliv Sci Technol 60:101880

    Article  CAS  Google Scholar 

  • Malaikozhundan B, Vinodhini J, Kalanjiam MA, Vinotha V, Palanisamy S, Vijayakumar S, Vaseeharan B, Mariyappan A (2020) High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst Eng 43:1533–1547

    Article  CAS  PubMed  Google Scholar 

  • Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37:1–30

    Article  Google Scholar 

  • Moraes GS, Santos IB, Pinto SC, Pochapski MT, Farago PV, Pilatti GL, Santos FA (2019) Liposomal anesthetic gel for pain control during periodontal therapy in adults: a placebo-controlled RCT. J Appl Oral Sci 28:e20190025

    Article  PubMed  PubMed Central  Google Scholar 

  • Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6(11):1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberoi SS, Dhingra C, Sharma G, Sardana D (2015) Antibiotics in dental practice: how justified are we. Int Dent J 65(1):4–10

    Article  PubMed  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Article  Google Scholar 

  • Pedrosa P, Vinhas R, Fernandes A, Baptista PV (2015) Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials 5(4):1853–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ (2017) Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine 29:2457–2468

    Article  Google Scholar 

  • Peng X, Han Q, Zhou X, Chen Y, Huang X, Guo X, Peng R, Wang H, Peng X, Cheng L (2022) Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv 29(1):561–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinon-Segundo E, Ganem-Quintanar A, Alonso-Pérez V, Quintanar-Guerrero D (2005) Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm 294(1–2):217–232

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Chi M, Sun X, Xie X, Weir MD, Oates TW, Zhou Y, Wang L, Bai Y, Xu HH (2019) Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine 28:6937–6956

    Article  Google Scholar 

  • Radaic A, Malone E, Kamarajan P, Kapila YL (2022) Solid lipid nanoparticles loaded with Nisin (SLN-Nisin) are more effective than free Nisin as antimicrobial, Antibiofilm, and anticancer agents. J Biomed Nanotechnol 18(4):1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendiran M, Trivedi HM, Chen D, Gajendrareddy P, Chen L (2021) Recent development of active ingredients in mouthwashes and toothpastes for periodontal diseases. Molecules 26(7):2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Jermy BR, Akhtar S, Borgio JF, Abdul Azeez S, Ravinayagam V, Al Jindan R, Alsalem ZH, Buhameid A, Gani A (2019) Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol 47(1):2072–2082

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano C, Guzmán-Moreno J, Ángeles-Chávez C, Rodríguez-González V, Ortega-Sigala JJ, Ramírez-Santoyo RM, Vidales-Rodríguez LE (2020) Biosynthesis of silver nanoparticles by fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One 15(3):e0230275

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez MC, Toledano-Osorio M, Bueno J, Figuero E, Toledano M, Medina-Castillo AL, Osorio R, Herrera D, Sanz M (2019) Antibacterial effects of polymeric PolymP-n active nanoparticles. An in vitro biofilm study. Dent Mater 35(1):156–168

    Article  PubMed  Google Scholar 

  • Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against vibrio cholerae: variation in response depends on biotype. Nanomedicine 12(6):1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Gupta N, Gupta S (2016) Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv 6(80):76621–76631

    Article  CAS  Google Scholar 

  • Shetty NJ, Swati P, David K (2013) Nanorobots: future in dentistry. Saudi Dent J 25(2):49–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Vuddanda PR, Vijayakumar MR, Kumar V, Saxena PS, Singh S (2014) Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloids Surf B Biointerfaces 121:92–98

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Du J, Singh P, Yi TH (2018) Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif Cells Nanomed Biotechnol 46(6):1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Lett 7:219–242

    Article  CAS  Google Scholar 

  • Srinoi P, Chen YT, Vittur V, Marquez MD, Lee TR (2018) Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl Sci 8(7):1106

    Article  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210

    Article  CAS  PubMed  Google Scholar 

  • Supraja N, Prasad TN, Krishna TG, David E (2016) Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl Nanosci 6:581–590

    Article  CAS  Google Scholar 

  • Thakur P, Kumar V (2019) Kinetics and thermodynamic studies for removal of methylene blue dye by biosynthesize copper oxide nanoparticles and its antibacterial activity. J Environ Health Sci Eng 17:367–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonga GY, Moyano DF, Kim CS, Rotello VM (2014) Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci 19(2):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier JN, Peyrefitte CN, Biot F, Merens A, Simon F (2019) The threat of bioterrorism. Lancet Infect Dis 19(1):18–19

    Article  PubMed  Google Scholar 

  • Umar H, Kavaz D, Rizaner N (2019) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine 14:87–100

    Article  CAS  PubMed  Google Scholar 

  • Vangara A, Pramanik A, Gao Y, Gates K, Begum S, Chandra RP (2018) Fluorescence resonance energy transfer based highly efficient theranostic nanoplatform for two-photon bioimaging and two-photon excited photodynamic therapy of multiple drug resistance bacteria. ACS Appl Bio Mater 1(2):298–309

    Article  CAS  PubMed  Google Scholar 

  • Vikram Singh A, Sitti M (2016) Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des 22(11):1418–1428

    Article  Google Scholar 

  • Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 14:1227–1249

    Article  Google Scholar 

  • Wang L, Li Y, Ren M, Wang X, Li L, Liu F, Lan Y, Yang S, Song J (2022) pH and lipase-responsive nanocarrier-mediated dual drug delivery system to treat periodontitis in diabetic rats. Bioactive Mater 18:254–266

    Article  CAS  Google Scholar 

  • World Health Organization (2023) Antimicrobial resistance surveillance in Europe 2023–2021 data. World Health Organization (WHO), Geneva

    Google Scholar 

  • Wu B, Zhuang WQ, Sahu M, Biswas P, Tang YJ (2011) Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet light (UV) exposure. Sci Total Environ 409(21):4635–4639

    Article  CAS  PubMed  Google Scholar 

  • Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34:1–3

    Article  CAS  Google Scholar 

  • Wypych TP, Marsland BJ (2018) Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol 39(9):697–711

    Article  CAS  PubMed  Google Scholar 

  • Xia MY, Xie Y, Yu CH, Chen GY, Li YH, Zhang T, Peng Q (2019) Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release 307:16–31

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Mao C, Liu X, Zhang Y, Cui Z, Yang X, Yeung KW, Pan H, Chu PK, Wu S (2017) Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/ag/collagen coating. ACS Appl Mater Interfaces 9(31):26417–26428

    Article  CAS  PubMed  Google Scholar 

  • Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J (2014) Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 78:63–76

    Article  CAS  PubMed  Google Scholar 

  • Yamakami K, Tsumori H, Shimizu Y, Sakurai Y, Nagatoshi K, Sonomoto K (2016) Cationic lipid content in liposome-encapsulated nisin improves sustainable bactericidal activity against Streptococcus mutans. Open Dent J 10:360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, Chen Q, Huang M (2014) Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater 10(1):015001

    Article  PubMed  Google Scholar 

  • Yu K, Zhang Q, Dai Z, Zhu M, Xiao L, Zhao Z, Bai Y, Zhang K (2023) Smart dental materials intelligently responding to oral pH to combat caries: a literature review. Polymers 15(12):2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudovin-Farber I, Beyth N, Nyska A, Weiss EI, Golenser J, Domb AJ (2008) Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules 9(11):3044–3050

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, Gao W, Zhang L (2016) A bioadhesive nanoparticle–hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 8(28):18367–18374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen L, Wang Y, Song X, Li K, Yan X, Yu L, He Z (2021) Nanomaterial-based strategies in antimicrobial applications: progress and perspectives. Nano Res 14:4417–4441

    Article  CAS  Google Scholar 

  • Zhou J, Horev B, Hwang G, Klein MI, Koo H, Benoit DS (2016) Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. J Mater Chem B 4(18):3075–3085

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Peng X, Zhou X, Weir MD, Melo MA, Tay FR, Imazato S, Oates TW, Cheng L, Xu HH (2020) In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater 36(10):1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Huang Z, Shu X, Zhang C, Dong Z, Peng Q (2022) Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids Surf B Biointerfaces 6:112761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pushpalatha, C., Venkataramana, S., Ramesh, P., Kavya, B.M., Nagaraja, S., Kumar, K.V. (2024). Nanoparticles to Abate Antibiotic Resistance During the Management of Dental Diseases. In: Wani, M.Y., Wani, I.A., Rai, A. (eds) Nanotechnology Based Strategies for Combating Antimicrobial Resistance . Springer, Singapore. https://doi.org/10.1007/978-981-97-2023-1_17

Download citation

Publish with us

Policies and ethics