Skip to main content

Microbial Remediation Technologies for Mining Waste Management

  • Chapter
  • First Online:
Harnessing Microbial Potential for Multifarious Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 75 Accesses

Abstract

Mining activities have significantly contributed to pollution and environmental degradation, generating vast amounts of waste that pose substantial risks to ecosystems. Conventional remediation methods often fail to address the complex nature of pollutants in mining wastes. Alternative approaches, such as microbial remediation, have emerged as promising solutions for sustainable remediation of contaminated sites. This chapter provides a detailed overview of microbial remediation technologies specifically tailored to mining and industrial waste. It explores the diversity of microorganisms capable of degrading various pollutants commonly found in these waste, including heavy metals, organic pollutants, and toxic chemicals. Additionally, it examines factors that affect microbial activity and the optimization of remediation processes. Furthermore, it highlights the advantages, limitations, and applicability of microbial remediation techniques for different types of mining and industrial waste. The chapter also discusses the challenges and considerations regarding the real-world implementation of microbial remediation. Additionally, it reviews the synergistic effects of combining different antimicrobial approaches to enhance overall efficacy and efficiency. Overall, this chapter presents a valuable resource for interested parties seeking to understand and apply microbial remediation technologies for mining and industrial waste. By harnessing the power of microbes, these techniques offer promising prospects for restoring contaminated sites, reducing environmental impacts, and promoting sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abashina T, Vainshtein M (2023) Current trends in metal biomining with a focus on genomics aspects and attention to arsenopyrite leaching—a review. Microorganisms. 11:183

    Article  Google Scholar 

  • Abo-Alkasem M, Hassan N, Abo EM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Nat Res Centre 47:31

    Article  Google Scholar 

  • Acharya B, Kharel G (2020) Acid mine drainage from coal mining in the United States – an overview 588:125061

    Google Scholar 

  • Agboola O, Babatunde D, Isaac FO, Sadiku E, Popoola P, Moropeng L (2020) A review on the impact of mining operation: Monit##oring, assessment and management. Resul Eng 8:100181

    Article  Google Scholar 

  • Ai C, Yan Z, Hou S, Zheng X, Zeng Z, Amanze C (2020a) Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals 10:443

    Article  Google Scholar 

  • Ai C, Yan Z, Hou S, Zheng X, Zeng Z, Amanze C, Dai Z, Chai L, Qiu G, Zeng W (2020b) Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals 10:443

    Article  Google Scholar 

  • Alcasabas A, Massingberd-Mundy F, Breeze B, Ruiz Pérez M, Martínez García C (2020) BIORECOVER - New bio-based technologies for recapture of critical raw materials, Johnson matthey technology review

    Google Scholar 

  • Amobonye A, Aruwa C, Aransiola S, Omame J, Alabi T, Lalung J (2023) The Potential of Fungi in the Bioremediation of Pharmaceutically Active Compounds: a Comprehensive Review 14:1207792

    Google Scholar 

  • Anekwe I, Isa Y (2023) Bioremediation of acid mine drainage – Review 65:1047–1075

    Google Scholar 

  • Arif S, Schliekmann E, Hoppert M (2021) 16S rRNA amplicon sequencing of microbial biofilms from Marsberg copper mine. Germany 10:e01315-e1320

    Google Scholar 

  • Aznar-Sánchez J, García-Gómez J, Velasco-Muñoz J, Carretero-Gómez A (2018) Mining waste and its sustainable management: advances in worldwide research. Minerals 8:284–311

    Article  Google Scholar 

  • Barkay T, Miller S, Summers A (2003) Bacterial Mercury Resistance from Atoms to Ecosystems. 27:355–384

    Google Scholar 

  • Begum S, Rath S, Rath C (2022) Applications of Microbial Communities for the Remediation of Industrial and Mining Toxic Metal Waste: a Review 39:282–293

    Google Scholar 

  • Bernoth L, Firth I, McAllister P, Rhodes S (2000) Biotechnologies for Remediation and Pollution Control in the Mining Industry 17:105–111

    Google Scholar 

  • Bhattacharjee G, Gohil N, Singh V (2020) 14 - Synthetic biology approaches for bioremediation. In: Pandey VC, Singh V (eds), Bioremediation of pollutants. Elsevier

    Google Scholar 

  • das Neves Vasconcellos Brandão I, Ferreira de Macedo E, Barboza de Souza Silva P, Fontana Batista A, Graciano Petroni S, Gonçalves M (2023) Bionanomining of copper-based nanoparticles using pre-processed mineral tailings as precursor 338:117804

    Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  Google Scholar 

  • Bosecker K (1999) Microbial leaching in environmental clean-up programmes. Process Metallurgy. Elsevier 533–536

    Google Scholar 

  • Capeness M, Horsfall L (2020) Synthetic biology approaches towards the recycling of metals from the environment. Biochem Soc Trans 48:1367–1378

    Article  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar S, Siddiqui K, Williams T (2011) Biotechnological Uses of Enzymes from Psychrophiles 4:449–460

    Google Scholar 

  • Chakraborty R, Wu C, Hazen T (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:483–490

    Article  Google Scholar 

  • Chaurasia P, Jasuja ND, Kumar S (2022) Role of nanotechnology in microbial mediated remediation. In Review

    Google Scholar 

  • Chen L-X, Hu M, Huang L-N, Hua Z-S, Kuang J-L, Li S-J (2015) Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage 9:1579–1592

    Google Scholar 

  • Coelho E, Reis T, Cotrim M, Mullan T, Corrêa B (2020) Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water. Chemosphere 248:126068

    Article  Google Scholar 

  • Coker J (2016) Extremophiles and Biotechnology: Current Uses and Prospects 5:396

    Google Scholar 

  • Costa J, de Castro K, Rodriguez R, Sancinetti G (2022) Anaerobic Reactors for the Treatment of Sulphate and Metal-Rich Wastewater: a Review. 102:923–934

    Google Scholar 

  • Costa F, Lima É, Brito Y, de Oliveira D, da Rocha Filho G, do Nascimento L (2021) Microbial approach for valorization of mining wastes and tailings: an overview, pp 261–281

    Google Scholar 

  • Crisostomo C, Lima F, Dias R, Cardoso V, de Resende M (2016) Joint assessment of bioreduction of chromium (VI) and of removals of both total chromium and total organic carbon (TOC) in sequential hybrid bioreactors. Water, Air, Soil Poll 227:51

    Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption — A review 103:180–189

    Google Scholar 

  • Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Google Scholar 

  • Das A, Ghosh S (2022) Role of Microorganisms in Extenuation of Mining and Industrial Wastes 39:173–175

    Google Scholar 

  • Das S, Dash H, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984

    Article  Google Scholar 

  • Das A, Ghosh S (2018) Bioleaching of manganese from mining waste materials. In: Second International Conference on Materials Science

    Google Scholar 

  • Deshmukh D (2010) Elements of mining technology Vol. 1 (8th Edition). Denett & Company

    Google Scholar 

  • Ding W, Zhang Y, Shi S (2020) Development and Application of CRISPR/Cas in Microbial Biotechnology 8:711

    Google Scholar 

  • Dold B (2003) Speciation of the Most Soluble Phases in a Sequential Extraction Procedure Adapted for Geochemical Studies of Copper Sulfide Mine Waste 80:55–68

    Google Scholar 

  • Dopson M, Holmes D (2014) Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl Microbiol Biotechnol 98:8133–8144

    Article  Google Scholar 

  • Dopson M, Johnson D (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631

    Article  Google Scholar 

  • Dopson M, Lindström E (1999) Potential Role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40

    Article  Google Scholar 

  • Enkateswarlu K, Nirola R, Kuppusamy S, Thavamani P, Naidu R, Megharaj M (2016) Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev Environ Sci Bio/Technol 15:327–354

    Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685

    Article  Google Scholar 

  • Foti M, Sorokin D, Lomans B, Mussman M, Zacharova E, Pimenov N (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline Soda Lakes. Appl Environ Microbiol 73:2093–2100

    Article  Google Scholar 

  • Furukawa K (2000) Engineering dioxygenases for efficient degradation of environmental pollutants. Curr Opin Biotechnol 11:244–249

    Article  Google Scholar 

  • Gabay T (2022) Investigating the effects of phosphate mining in the Negev Desert on biological soil crust communities. Ben-Gurion University of the Negev

    Google Scholar 

  • Gadd G (2010) Metals, minerals and microbes: geomicrobiology and bioremediation 156:609–643

    Google Scholar 

  • Gao W, Wu C (2023) Editorial: biogeochemistry of metals in contaminated environments. Front Environ Sci 11:1187361

    Article  Google Scholar 

  • Ghose M (2004) Effect of opencast mining on soil fertility. J Sci Ind Res 63

    Google Scholar 

  • Godoy-Faúndez A, Aitken D, Reyes-Bozo L, Rivera D (2015) Environmental-microbial biotechnology inside mining operations from an engineering viewpoint based on LCA. In: Sukla LB, Pradhan N, Panda S, Mishra BK (eds) Environmental microbial biotechnology. Springer International Publishing, Cham, pp 133–158

    Chapter  Google Scholar 

  • Gupta GA, Joia J (2016) Microbes as potential tool for remediation of heavy metals: a review. J Micro Biochem Technol

    Google Scholar 

  • Guri M, Durand L, Cueff-Gauchard V, Zbinden M, Crassous P, Shillito B (2012) Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata. ISME J 6:597–609

    Article  Google Scholar 

  • Hallberg K, González-Toril E, Johnson D (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Google Scholar 

  • Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of Environmental Bacteria to Heavy Metals 64:7–15

    Google Scholar 

  • Hernández I, Morales M, Morales F, Romero L, Camacho J (2023) Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics 117183

    Google Scholar 

  • Hilson G (2002) The Environmental Impact of Small-Scale Gold Mining in Ghana: Identifying Problems and Possible Solutions. 168:57–72

    Google Scholar 

  • Hlihor R, Petronela C, Gavrilescu M (2022) Removal of heavy metals from the environment by phytoremediation and microbial remediation. In El‐Gendy N (ed) Sustainable solutions for environmental pollution. Wiley, pp 95–146

    Google Scholar 

  • Hu Y, Chen Y, Xu J, Wang X, Luo S, Mao B (2022) Metagenomic discovery of novel CRISPR-Cas13 systems 8:107

    Google Scholar 

  • Hua Z-S, Han Y-J, Chen L-X, Liu J, Hu M, Li S-J (2015) Ecological Roles of Dominant and Rare Prokaryotes in Acid Mine Drainage Revealed by Metagenomics and Metatranscriptomics 9:1280–1294

    Google Scholar 

  • Imron M, Kurniawan S, Soegianto A (2019) Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate. Surabaya, Indonesia under Different Saline Conditions. 241:113–122

    Google Scholar 

  • Jaiswal S, Singh D, Shukla P (2019) Gene Editing and Systems Biology Tools for Pesticide Bioremediation: a Review 10:87

    Google Scholar 

  • Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau 9:2603–2621

    Google Scholar 

  • Jiménez-Díaz V, Pedroza-Rodríguez A, Ramos-Monroy O, Castillo-Carvajal L (2022) Synthetic biology: a new Era in hydrocarbon bioremediation. Processes 10:712

    Article  Google Scholar 

  • Johnsen A, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    Article  Google Scholar 

  • Johnson D, Hallberg K (2007) Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. In: Rawlings DE, Johnson DB (eds), Biomining. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 237–261

    Google Scholar 

  • Johnson D, Hallberg K (2003) The Microbiology of Acidic Mine Waters 154:466–473

    Google Scholar 

  • Johnson D, Hallberg K (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  • Kalin M, Wheeler W, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation Options for Heavy Metal Pollution 9:191203

    Google Scholar 

  • Kaya S, Ozcelikay G, Cetinkaya A, Bakirhan N, Ozkan S (2023) Emerging trends—current developments in nanobioremediation via electrochemistry. Elsevier, In Nanoremediation

    Book  Google Scholar 

  • Kebede G, Tafese T, Abda E, Kamaraj M, Assefa F (2021) Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts 2021:9823362

    Google Scholar 

  • Kesler S, Simon A (2015) Mineral resources. Economics and the Environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Kiani S, Lehosmaa K, Kløve B, Ronkanen A-K (2022) Nitrogen removal of mine-influenced water in a hybrid bioreactor with floating hook-moss (Warnstorfia fluitans) in cold climate conditions. Ecol Eng 177:106562

    Article  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  Google Scholar 

  • Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco R (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65:2256–2259

    Article  Google Scholar 

  • Krümmelbein J, Bens O, Raab T, Naeth M (2012) A history of lignite coal mining and reclamation practices in Lusatia, eastern Germany. Can J Soil Sci 92:53–66

    Article  Google Scholar 

  • Kupka D, Liljeqvist M, Nurmi P, Puhakka J, Tuovinen O, Dopson M (2009) 160:767–774

    Google Scholar 

  • Kuyucak N, Akcil A (2013) Cyanide and Removal Options from Effluents in Gold Mining and Metallurgical Processes 50–51:13–29

    Google Scholar 

  • Lehembre F, Doillon D, David E, Perrotto S, Baude J, Foulon J (2013) Soil Metatranscriptomics for Mining Eukaryotic Heavy Metal Resistance Genes 15:2829–2840

    Google Scholar 

  • Leitão A (2009) Potential of Penicillium Species in the Bioremediation Field 6:1393–1417

    Google Scholar 

  • Lemes C, Villa M, Felestrino É, Perucci L, Assis R, Cordeiro I (2021) 16S rRNA gene amplicon sequencing data of the iron quadrangle ferruginous caves (Brazil) Shows the importance of conserving this singular and threatened geosystem 13:494

    Google Scholar 

  • Li F, Neves A, Ghoshal B, Guan L (2018) Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants1. J Dairy Sci 101:5605–5618

    Article  Google Scholar 

  • Li JT, Jia P, Wang X-J, Ou S-N, Yang T-T, Feng S-W (2022) Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland 8:71

    Google Scholar 

  • Lin Y, Jiao Y, Zhao M, Wang G, Wang D, Xiao W (2021) Ecological Restoration of Wetland Polluted by Heavy Metals in Xiangtan Manganese Mine Area 9:1702

    Google Scholar 

  • Luka Y, Highina B, Zubairu A (2018) Bioremediation: a solution to environmental pollution-a review 7:101–109

    Google Scholar 

  • Ma X (2014) Study on ecological restoration of Handan iron mining area. Adv Mater Res 955:2102–2105

    Article  Google Scholar 

  • Malik S, Bora J, Nag S, Sinha S, Mondal S, Rustagi S, Mondal S, Rustagi S et al (2023) Fungal-based remediation in the treatment of anthropogenic activities and pharmaceutical-pollutant-contaminated wastewater. Water 15:2262

    Article  Google Scholar 

  • Mandeep SP (2020) Microbial Nanotechnology for Bioremediation of Industrial Wastewater 11:590631

    Google Scholar 

  • Mendez M, Neilson J, Maier R (2008) Characterization of a Bacterial Community in an Abandoned Semiarid Lead-Zinc Mine Tailing Site 74:3899–3907

    Google Scholar 

  • Mishra S, Panda S, Pradhan N, Biswal S, Sukla L, Mishra B (2015) Microbe–mineral interactions: exploring avenues towards development of a sustainable microbial technology for coal beneficiation. In LB S, Pradhan N, Panda S, Mishra B (eds), Environmental microbial biotechnology. Cham: Springer International Publishing, pp 33–52

    Google Scholar 

  • Moldovan B, David L (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10:202

    Article  Google Scholar 

  • Moore J, Luoma S (1990) Hazardous wastes from large-scale metal extraction. A Case Study. 24:1278–1285

    Google Scholar 

  • Morello L, Raga R, Lavagnolo M, Pivato A, Ali M, Yue D (2017) The S.An.A.® concept: Semi-aerobic, Anaerobic, Aerated bioreactor landfill. Waste Manag 67:193–202

    Google Scholar 

  • Mosa K, Saadoun I, Kumar K, Helmy M, Dhankher O (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids, 7

    Google Scholar 

  • Mudd G (2010) The Environmental Sustainability of Mining in Australia: Key Mega-Trends and Looming Constraints 35:98–115

    Google Scholar 

  • Mukherjee A, Reddy M (2020) Metatranscriptomics: an approach for retrieving novel eukaryotic genes from polluted and related environments 10:71

    Google Scholar 

  • Muniruzzaman M, Pedretti D (2021) Mechanistic Models Supporting Uncertainty Quantification of Water Quality Predictions in Heterogeneous Mining Waste Rocks: a Review 35:985–1001

    Google Scholar 

  • Neu M, Boukhalfa H, Merroun M (2010) Biomineralization and biotransformations of actinide materials. MRS Bull 35:849–857

    Article  Google Scholar 

  • Newsome L, Falagán C (2021) The microbiology of metal mine waste: bioremediation applications and implications for planetary health. GeoHealth 5:e2020GH000380

    Google Scholar 

  • Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  • Nkuna R, Ijoma G, Matambo T (2022) Applying EDTA in chelating excess metal ions to improve downstream DNA recovery from mine tailings for long-read amplicon sequencing of acidophilic fungi communities. J Fungi. 8:419

    Article  Google Scholar 

  • Noike T, Nakamura K, Matsumoto J (1983) Oxidation of ferrous iron by acidophilic iron-oxidizing bacteria from a stream receiving acid mine drainage. Water Res 17:21–27

    Article  Google Scholar 

  • Noll P, Lilge L, Hausmann R, Henkel M (2020) Modeling and Exploiting Microbial Temperature Response 8:121

    Google Scholar 

  • Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V (2016) Bacterial community structures in freshwater polar environments of Svalbard. Microbes Environ 31:401–409

    Article  Google Scholar 

  • Okanigbe D, Popoola A, Malatji N, Lesufi T, Sekgobela G (2022) Bionanomining: a revised insight into processing of south Africa’s complex gold ores. Springer

    Google Scholar 

  • Ortiz-Castillo J, Mirazimi M, Mohammadi M, Dy E, Liu W (2021) The role of microorganisms in the formation, dissolution, and transformation of secondary minerals in mine rock and drainage: a review 11:1349

    Google Scholar 

  • Park D, Yun Y-S, Park J (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  Google Scholar 

  • Perez ID, Botelho Junior AB, Aliprandini P (2020) Espinosa DCR: copper recovery from nickel laterite with high-iron content: A continuous process from mining waste. Canadian J Chem Eng 98:957–998

    Article  Google Scholar 

  • Pitchaiah P (2017) Impacts of sand mining on environment–a review. Intern J Geoinform Geol Sci 4:1–6

    Google Scholar 

  • Poretsky R, Rodriguez RL, Luo C, Tsementzi D, Konstantinidis K (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics 9:e93827

    Google Scholar 

  • Puggioni G (2022) Remediation of Multi-contaminated groundwater using bioelectrochemical systems

    Google Scholar 

  • Punia A, Pratap Singh R, Singh V, Chauhan N (2023) Chapter 17 - environment sustainability with microbial nanotechnology. In Singh P, Kumar V, Bakshi M, Hussain C, Sillanpää M (eds), Environmental applications of microbial nanotechnology. Elsevier, pp 289–314

    Google Scholar 

  • Punia A, Siddaiah N (2017) Assessment of heavy metal contamination in groundwater of khetri copper mine region. India Health Risk Asses 14:9–19

    Google Scholar 

  • Rabani M, Hameed I, Mir T, Wani B, Gupta M, Habib A (2022) Chapter 5 - Microbial-assisted phytoremediation. In Bhat R, Tonelli F, Dar G, Hakeem K (eds), Phytoremediation. Academic Press, pp 91–114

    Google Scholar 

  • Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A (2023) Genetically engineered microorganisms for environmental remediation. Chemosphere 310:136751

    Article  Google Scholar 

  • Rai P (2008) Heavy Metal Pollution in Aquatic Ecosystems and Its Phytoremediation Using Wetland Plants: an Ecosustainable Approach 10:133–160

    Google Scholar 

  • Rajeev M, Sushmitha T, Aravindraja C, Toleti S, Pandian S (2021) Exploring the Impacts of Heavy Metals on Spatial Variations of Sediment-Associated Bacterial Communities 209:111808

    Google Scholar 

  • Rawlings D, Johnson D (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  Google Scholar 

  • Rebello S, Anoopkumar A, Aneesh E, Sindhu R, Binod P, Kim S (2021) Hazardous Minerals Mining: Challenges and Solutions 402:123474

    Google Scholar 

  • Ribeiro A, Prasad M (2021) Electrokinetic remediation for environmental security and sustainability. Wiley Online Library

    Google Scholar 

  • Riekkola-Vanhanen M (2013) Talvivaara mining company – from a project to a mine. Miner Eng 48:2–9

    Article  Google Scholar 

  • Robles-González I, Fava F, Poggi-Varaldo H (2008) A Review on Slurry Bioreactors for Bioremediation of Soils and Sediments 7:5

    Google Scholar 

  • Rodríguez-Galán M, Baena-Moreno F, Vázquez S, Arroyo-Torralvo F, Vilches L, Zhang Z (2019) Remediation of Acid Mine Drainage 17:1529–1538

    Google Scholar 

  • Roldán M, Olaya-Abril A, Sáez L, Cabello P, Luque-Almagro V, Moreno-Vivián C (2021) Bioremediation of cyanide-containing wastes: the potential of systems and synthetic biology for cleaning up the toxic leftovers from mining. EMBO Rep 22:e53720

    Article  Google Scholar 

  • Rylott E, Bruce N (2020) How synthetic biology can help bioremediation. Synth Biol Synth Biomol 58, 86–95

    Google Scholar 

  • Sahoo S, Routray SP, Lenka S, Bhuyan R, Mohanty JN (2022) CRISPR/Cas-Mediated functional gene editing for improvement in bioremediation: an emerging strategy. In Kumar V, Thakur IS (eds), Omics insights in environmental bioremediation. Springer, Singapore

    Google Scholar 

  • Sana S, Neelam D, Gupta V, Devki D, Rahi R (2021) An overview: application of microorganisms in bio-mining of metals. Intern J Pharm Biolog Sci 11:01–08

    Article  Google Scholar 

  • Sánchez-Andrea AI, Rodríguez N, Amils R, Sanz J (2011) Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093

    Article  Google Scholar 

  • Sánchez-Andrea I, Triana D, Sanz J (2012) Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci Technol 66:2425–2431

    Article  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Biohydrometallurgy and the environment-toward the mining 59:159–75

    Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  Google Scholar 

  • Saxena P, Singh N, Harish, null, Singh A, Pandey S, Thanki A (2020) Recent advances in phytoremediation using genome engineering CRISPR–Cas9 technology. Bioremediation of Pollutants. Elsevier

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Article  Google Scholar 

  • Schippers VM, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  Google Scholar 

  • Sengupta M (2021) Environmental impacts of mining: monitoring. Restoration and Control. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Seo J-S, Keum Y-S, Li Q (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  Google Scholar 

  • Shahriari Moghadam M, Ebrahimipour G, Abtahi B, Ghassempour A, Hashtroudi M (2014) Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. J Environ Health Sci Eng 12:114

    Article  Google Scholar 

  • Sigel HSRM (2005) Metal ions in biological systems: biogeochemisty, Availability, and Transport of Metals in the Environment. CRC Press

    Google Scholar 

  • Singer A, Gilbert E, Luepromchai E, Crowley D (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54:838–433

    Article  Google Scholar 

  • Singh B, Walker A (2006) Microbial Degradation of Organophosphorus Compounds 30:428–471

    Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, Van Der Ha D, Verstraete W (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  Google Scholar 

  • Stefanova A, Angelov A, Bratkova S, Genova P, Nikolova K (2018) Influence of electrical conductivity and temperature in a microbial fuel cell for treatment of mining waste water. Lett Soc Sci Series 3:1–7

    Google Scholar 

  • Stierle A, Stierle D (2005) Bioprospecting in the Berkeley pit: Bio active metabolites from acid mine waste extremophiles, pp 1123–1175

    Google Scholar 

  • Sun W, Ji B, Khoso S, Tang H, Liu R, Wang L (2018) An Extensive Review on Restoration Technologies for Mining Tailings 25:33911–33925

    Google Scholar 

  • Sun W, Xiao E, Krumins V, Dong Y, Li B, Deng J (2019) Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek 78:651–664

    Google Scholar 

  • Tang C, Zhong J, Lv Y, Liu X, Li Y, Zhang M (2021) Response and dynamic change of microbial community during bioremediation of Uranium Tailings by Bacillus sp. Minerals 11:967

    Google Scholar 

  • Thiruvenkatachari R, Su S (2017) 5 - aerobic treatment of effluents from the mining industry. In: Lee D-J, Jegatheesan V, Ngo H, Hallenbeck P, Pandey A (eds) Current Developments in Biotechnology and Bioengineering. Elsevier

    Google Scholar 

  • Tran, K., Lee, H.-M., Thai, T., Shen, J., Eyun, S.-. i ., Na, D.: Synthetically engineered microbial scavengers for enhanced bioremediation. Journal of Hazardous Materials. 419, 126516, (2021)

    Google Scholar 

  • Tuovinen H, Pelkonen M, Lempinen J, Pohjolainen E, Read D, Solatie D (2018) Behaviour of metals during Bioheap leaching at the Talvivaara mine. Finland 8:66

    Google Scholar 

  • Vaksmaa A, Guerrero-Cruz S, Ghosh P, Zeghal E, Hernando-Morales V, Niemann H (2023) Role of fungi in bioremediation of emerging pollutants. Front Mar Sci 10:1070905

    Article  Google Scholar 

  • Valdes V, Quatrini J, Hallberg R, Dopson K, Valenzuela PDT, null, Holmes D (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191:5877–5878

    Google Scholar 

  • van der Heyde M, Bunce M, Dixon K, Wardell-Johnson G, White N, Nevill P (2020) Changes in Soil Microbial Communities in Post Mine Ecological Restoration: Implications for Monitoring Using High Throughput DNA Sequencing 749:142262

    Google Scholar 

  • Van Hille R, Boshoff G, Rose P, Duncan J (1999) A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycl 27:157–167

    Article  Google Scholar 

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037

    Article  Google Scholar 

  • Wang Y (2018) Biostimulation remediation technologies for groundwater contaminants. IGI Global

    Google Scholar 

  • Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X (2020) Effective bioleaching of low-grade copper ores: insights from microbial cross experiments. Biores Technol 308:123273

    Article  Google Scholar 

  • Whitehead P, Prior H (2005) Bioremediation of Acid Mine Drainage: an Introduction to the Wheal Jane Wetlands Project 338:15–21

    Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    Article  Google Scholar 

  • Willow M, Cohen R (2003) PH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. J Environ Qual 32:1212–1221

    Article  Google Scholar 

  • Wong-Pinto L-S, Mercado A, Chong G, Salazar P, Ordóñez J (2021) Biosynthesis of copper nanoparticles from copper tailings ore–an approach to the ‘Bionanomining.’ J Clean Prod 315:128107

    Article  Google Scholar 

  • Wong-Pinto L-S, null, Menzies A, Ordóñez J (2020) Bionanomining: biotechnological synthesis of metal nanoparticles from mining waste—opportunity for sustainable management of mining environmental liabilities. Appl Microb Biotech 104:1859–1869

    Google Scholar 

  • Wu A, Yin S, Wang H, Qin W, Qiu G (2009) Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Biores Technol 100:1931–1936

    Article  Google Scholar 

  • Wu Y, Jameel A, Xing X-H, Zhang C (2022b) Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol 40:38–59

    Article  Google Scholar 

  • Wu Z, Man Q, Niu H, Lyu H, Song H, Li R (2022) Recent advances and trends of trichloroethylene biodegradation: a critical review. 13

    Google Scholar 

  • Yin S, Wang L, Kabwe E, Chen X, Yan R, An K (2018) Copper bioleaching in China: review and prospect. Minerals 8:32

    Article  Google Scholar 

  • Zhang M, Li Z, Haggblom M, Young L, He Z, Li F (2020) Characterization of nitrate-dependent As (III)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics. Environ Sci Technol 54:7366–7377

    Article  Google Scholar 

  • Zhang CY (2021) Application of microbiotechnology in ecological restoration of mines. IOP conference series: earth and environmental science: IOP publishing, pp 1755–1315

    Google Scholar 

  • Zhang T, Surampalli R, Tyagi R, Benerji S (2017) 14 - biological treatment of hazardous waste. In: Wong J, Tyagi R, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 311–340

    Google Scholar 

  • Zhang M, Kolton M, Li Z, Lin H, Li F, Lu G (2021) Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics. FEMS Microbiol Ecol 97:fiab057

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Human Resource Development Project, Ministry of Higher Education, Sri Lanka, funded by the Asian Development Bank (Grant No. CRG/R2/KE6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep W. Samarasekere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samarasekere, P.W. (2024). Microbial Remediation Technologies for Mining Waste Management. In: Bala, K., Ghosh, T., Kumar, V., Sangwan, P. (eds) Harnessing Microbial Potential for Multifarious Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-1152-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1152-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1151-2

  • Online ISBN: 978-981-97-1152-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics