Skip to main content

Biofilm-Mediated Heavy Metals Bioremediation

  • Chapter
  • First Online:
Microbial Applications for Environmental Sustainability

Abstract

Industrial activities have generated wastes globally and are still being created and dumped, resulting in contaminated environments (terrestrial as well as aquatic). Industrial wastes include polycyclic aromatic hydrocarbons, polythene, dyes, phenols, and heavy metals which degrade the quality of soil and cause havoc to ecosystem, animal, and human welfare. In order to overcome from the problem, various remediation strategies have been initiated such as land sparing, soil excavation, crop rotation, land sharing, and offsite treatment. While these methods require trained workers and could potentially introduce harmful substances into the environment. These are capable of removing and detoxifying the heavy metal contamination. Microbial communities produce extracellular polymeric substance (biofilm) that enhances the colonization of microbial cells and shields them in harsh environmental conditions. Biofilm formation is a natural character, exhibited by microbes growing on natural and artificial surfaces. In biofilms, multiple microorganisms reside together and degrade the pollutants in polluted soil and groundwater. Biofilm functions through cell signalling and quorum sensing to remove metal contamination from the environment. These microbes include Gram-positive, Gram-negative bacteria, cyanobacteria, fungi, and microalgae. Microbial biofilms are used as biomarkers and biofilters when pollution is on large scale. Bioremediation is a developing technology and has attracted interests in research and development. This chapter provides clear idea about toxicity of heavy metals in environment and the role of microbial biofilms in bioremediation of heavy metals from environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadin H, Fay M, Ingerman L, Tencza B, Yu D, Wilbur SB (2012) Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2018) Microalgae–bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Appl Microbiol Biotechnol 102(3):1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Alotaibi GF, Bukhari MA (2021) Factors influencing bacterial biofilm formation and development. Am J Biomed Sci Res 12(6):617–626

    Article  Google Scholar 

  • Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates N (2003) Metallic and inorganic mercury poisoning. Emergen Nurse 11(1):25

    Article  Google Scholar 

  • Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012:460508

    Article  PubMed  Google Scholar 

  • Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World J 18(2):321–336

    Google Scholar 

  • Bist P, Choudhary S (2022) Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biol Trace Elem Res 200:1–23

    Article  Google Scholar 

  • Breton J, Le Clère K, Daniel C, Sauty M, Nakab L, Chassat T et al (2013) Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch Toxicol 87(10):1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, Nayak B et al (2016) Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: magnitude, health, socio-economic effects and mitigation approaches. J Trace Elem Med Biol 38:33–45

    Article  CAS  PubMed  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by pseudomonas putida CZ1. Colloids Surf B: Biointerfaces 46(2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Cao J, Jia Y, Liu X, Yan Y, Pang G (2012) Modulation of mice fecal microbiota by administration of casein glycomacropeptide. Microbiol Res 3(1):8–12

    Article  Google Scholar 

  • Choiniere J, Wang L (2016) Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma. Acta Pharm Sin B 6(5):426–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L, Dai Z (2019) The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front Oncol 9:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal (loid) compounds. Crit Rev Toxicol 34(3):301–333

    Article  CAS  PubMed  Google Scholar 

  • Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Li X (2020) Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol 3(1):1–12

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575

    Article  CAS  PubMed  Google Scholar 

  • Flora SJ, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Lead. Elsevier Science BV, Amsterdam, pp 158–228

    Chapter  Google Scholar 

  • Flora SJS, Saxena G, Gautam P, Kaur P, Gill KD (2007) Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA. Chem Biol Interact 170(3):209–220

    Article  CAS  PubMed  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garai P, Banerjee P, Mondal P, Saha NC (2021) Effect of heavy metals on fishes: toxicity and bioaccumulation. J Clin Toxicol S:18

    Google Scholar 

  • Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29

    Article  CAS  PubMed  Google Scholar 

  • Has-Schön E, Bogut I, Strelec I (2006) Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch Environ Contam Toxicol 50(4):545–551

    Article  PubMed  Google Scholar 

  • Headley JV, Gandrass J, Kuballa J, Peru KM, Gong Y (1998) Rates of sorption and partitioning of contaminants in river biofilm. Environ Sci Technol 32(24):3968–3973

    Article  CAS  Google Scholar 

  • Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L et al (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  PubMed  PubMed Central  Google Scholar 

  • International Agency for Research on Cancer (1987) Overall evaluation of carcinogenicity: an updating of monographs. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 1–42. IARC, Lyons, pp 230–232

    Google Scholar 

  • International Agency for Research on Cancer (1993) Cadmium and cadmium compounds. In: Monographs on evaluation of carcinogenic risks to humans, vol 58. International Agency for Research on Cancer, Lyon, pp 119–237

    Google Scholar 

  • Järup L, Ã…kesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  PubMed  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10(1):1–13

    Google Scholar 

  • Kumar S, Sharma A (2019) Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health 34(4):327–338

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079

    Google Scholar 

  • Liao NQ, Li HM (2013) Conceivable bioremediation techniques based on quorum sensing. In: Applied mechanics and materials, vol 295. Trans Tech Publications Ltd., Durnten, pp 39–44

    Google Scholar 

  • Lima RA, de Souza SLX, Lima LA, Batista ALX, de Araújo JTC, Sousa FFO et al (2020) Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol 51(4):1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Li X, Chen L, Chen J, Wan Y, Liu C (2014) Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chem Eng J 239:312–321

    Article  CAS  Google Scholar 

  • Mahto KU, Das S (2020) Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. Ecotoxicol Environ Saf 206:111087

    Article  CAS  PubMed  Google Scholar 

  • Mangwani N, Kumari S, Das S (2016) Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev 32(1-2):43–73

    Article  PubMed  Google Scholar 

  • Mitra RS (1984) Protein synthesis in Escherichia coli during recovery from exposure to low levels of Cd2+. Appl Environ Microbiol 47(5):1012–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra RK, Behera SS, Patra JK, Thatoi H, Parhi PK (2020) Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. In: New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier, pp 267–281

    Chapter  Google Scholar 

  • Monalisa M, Kumar PH (2013) Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. Var k-851) during seedling growth. J Stress Physiol Biochem 9(2):232–241

    Google Scholar 

  • Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14(9):589–600

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Markovitz A (1970) Mutant analysis and enzyme subunit complementation in bacterial bioluminescence in photobacterium Fischeri. J Bacteriol 104(1):300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura H, Takeuchi T, Morimoto K (1996) A comparison of the 8-hydroxydeoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutat Res 340(2-3):175–182

    Article  CAS  PubMed  Google Scholar 

  • Olojo EAA, Olurin KB, Mbaka G, Oluwemimo AD (2005) Histopathology of the gill and liver tissues of the African catfish Clarias gariepinus exposed to lead. Afr J Biotechnol 4(1):117–122

    CAS  Google Scholar 

  • Pal A, Paul A (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmeira CM, Madeira VM (1997) Mercuric chloride toxicity in rat liver mitochondria and isolated hepatocytes. Environ Toxicol Pharmacol 3(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Paul SDAK (2015) Hexavalent chromate reduction during growth and by immobilized cells of Arthrobacter sp. SUK 1205. Science 34(3):158–168

    Google Scholar 

  • Prince RC (2000) Bioremediation. In: Kirk-Othmer (ed) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Rahman MM, Asaduzzaman M, Naidu R (2013) Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. J Hazard Mater 262:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Reuben A (2018) Childhood lead exposure and adult neurodegenerative disease. J Alzheimers Dis 64(1):17–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinaldi, M., Micali, A., Marini, H., Adamo, E. B., Puzzolo, D., Pisani, A., .et al (2017). Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem, 24(35), 3879-3893

    Article  CAS  PubMed  Google Scholar 

  • Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29(3):281–313

    Article  CAS  Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 203–232

    Chapter  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  PubMed  Google Scholar 

  • Sonawdekar S (2012) Bioremediation: a boon to hydrocarbon degradation. Int J Environ Sci 2(4):2408–2424

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Sundar K, Sadiq IM, Mukherjee A, Chandrasekaran N (2011) Bioremoval of trivalent chromium using bacillus biofilms through continuous flow reactor. J Hazard Mater 196:44–51

    Article  CAS  PubMed  Google Scholar 

  • Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134(3):461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Cham, pp 133–164

    Chapter  Google Scholar 

  • Todd DA, Parlet CP, Crosby HA, Malone CL, Heilmann KP, Horswill AR, Cech NB (2017) Signal biosynthesis inhibition with ambuic acid as a strategy to target antibiotic-resistant infections. Antimicrob Agents Chemother 61(8):e00263–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trasande L, Landrigan PJ, Schechter C (2005) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113(5):590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1):37–56

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJB, Moncol J, Izakovic MM, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma GS, Bhattacharjee G, Gohil N, Singh V (2020) Current status, challenges and future of bioremediation. In: Bioremediation of pollutants. Elsevier, Amsterdam, pp 403–415

    Chapter  Google Scholar 

  • Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani AL, Ansari MO, Ahmad M, Parveen N, Siddique HR, Shadab GG (2019) Influence of zinc levels on the toxic manifestations of lead exposure among the occupationally exposed workers. Environ Sci Pollut Res 26(32):33541–33554

    Article  CAS  Google Scholar 

  • Wilson DN (1988) Cadmium-market trends and influences. In: Cadmium 87. Proceedings of the 6th international cadmium conference, vol 9. Cadmium Association, London, p 16

    Google Scholar 

  • WoliÅ„ska A, Stepniewska Z, Wlosek R (2013) The influence of old leather tannery district on chromium contamination of soils, water and plants. Sci Res 5:6

    Google Scholar 

  • Yang JL, Wang LC, Chang CY, Liu TY (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33(3):194–201

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Zhang M, Kurisu F, Toyota K (2017) Bacterial degraders of coexisting dichloromethane, benzene, and toluene, identified by stable-isotope probing. Water Air Soil Pollut 228(11):1–10

    Article  Google Scholar 

  • Yousuf S, Tyagi A, Singh R (2022) Probiotic supplementation as an emerging alternative to chemical therapeutics in finfish aquaculture: a review. Probiotics Antimicro Prot 15:1151–1168

    Article  Google Scholar 

  • Zhang X, Das S, Li A, Ma Q, Tan L (2021) Marine microbes for contaminant bioremediation. Front Microbiol 12:762968

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zhao F, Wang J, Zhong N (2017) Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 7(58):36670–36683

    Article  CAS  Google Scholar 

  • Zhao X, Huang J, Lu J, Sun Y (2019) Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf 170:218–226

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis AI, Moussas PA, Psaltou SG (2019) Groundwater and soil pollution: bioremediation. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousuf, S., Singh, R. (2024). Biofilm-Mediated Heavy Metals Bioremediation. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Microbial Applications for Environmental Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0676-1_12

Download citation

Publish with us

Policies and ethics