Skip to main content

Physiochemical Characterization Technique of Bionanomaterials

  • Chapter
  • First Online:
Biobased Nanomaterials

Abstract

With the continuous growth of the field of nanotechnology, researchers are uncovering an increasing number of applications that can derive advantages from the utilization of nanomaterials (NMs). Nanomaterials are rapidly being subjected to almost every form of chemical and physical analysis. The emphasis on instruments with great spatial resolution is driven by their tiny sizes. Due of their substantial surface area, nanomaterials are commonly evaluated utilizing surface analysis techniques. The analysis of nanomaterials poses a significant analytical obstacle due to their dynamic characteristics, such as their tiny dimensions, high reactivity, and instability. Additionally, their minimal proportions in the surrounding environment often fall below the conventional limits of detection for analytical techniques. Irrespective of the methodology employed, nanostructured materials pose numerous challenges in terms of conducting comprehensive, practical, and essential analyses. Significant advancements in the field of nanoscience and nanotechnology have been achieved in recent years, mostly attributed to the enhanced accessibility of advanced physical techniques for the characterization of nanomaterials. This chapter provides a comprehensive overview of the methodologies frequently employed for the investigation of nanomaterials, encompassing their dimensions, morphology, surface characteristics, chemical composition, level of purity, and long-term viability. Additionally, the advantages and limitations associated with these techniques are discussed. Currently, there is a lack of explicit US Food and Drug Administration (FDA) rules pertaining to the development of methods or substances utilizing nanoparticles intended for analytical purposes or treatment. Establishment of standardized protocols and techniques for nanomaterial characterization, particularly in the context of their application as theranostics agents, is of utmost importance and requires immediate attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhter S, Ahmad I, Ahmad MZ, Ramazani F, Singh A, Rahman Z et al (2013) Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 13:362–378

    Article  CAS  PubMed  Google Scholar 

  • Ando J, Yano TA, Fujita K, Kawata S (2013) Metal nanomaterials for nano-imaging and nano-analysis. Phys Chem Chem Phys 15:13713–13722

    Article  CAS  PubMed  Google Scholar 

  • Baer DR (2012) Application of surface analysis methods to nanomaterials: summary of ISO/TC 201 technical report: ISO 14187:2011 – surface chemical analysis – characterization of nanomaterials. Surf Interface Anal 44:1305–1308

    Article  CAS  Google Scholar 

  • Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97(11):2781–2791

    Article  CAS  Google Scholar 

  • Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem 30:4–17

    Article  CAS  Google Scholar 

  • Bernier M-C, Besse M, Vayssade M, Morandat S, El Kirat K (2012) Titanium dioxide nanomaterials disturb the fibronectin-mediated adhesion and spreading of pre-osteoblastic cells. Langmuir 28:13660–13667

    Article  CAS  PubMed  Google Scholar 

  • Bibi S, Kaur R, Henriksen-Lacey M, McNeil SE, Wilkhu J, Lattmann E et al (2011) Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm 417:138–150

    Article  CAS  PubMed  Google Scholar 

  • Biju V, Mundayoor S, Omkumar RV, Anas A, Ishikawa M (2010) Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol Adv 28:199–213

    Article  CAS  PubMed  Google Scholar 

  • Boguslavsky Y, Fadida T, Talyosef Y, Lellouche J-P (2011) Controlling the wettability properties of polyester fibers using grafted functional nanomaterials. J Mater Chem 21:10304–10310

    Article  CAS  Google Scholar 

  • Brewer AK (2021) Hydrodynamic chromatography: the underutilized size-based separation technique. Chromatographia 84(9):807–811

    Article  CAS  Google Scholar 

  • Briscoe CJ, Hage DS (2009) Factors affecting the stability of drugs and drug metabolites in biological matrices. Bioanalysis 1:205–220

    Article  CAS  PubMed  Google Scholar 

  • Boukari H, Sackett DL (2008) Fluorescence correlation spectroscopy and its application to the characterization of molecular properties and interactions. Methods Cell Biol 84:659–678

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  • Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57:2130–2146

    Article  CAS  PubMed  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Techniques for the study of biological structure and function. W. H. Freeman, San Francisco

    Google Scholar 

  • Chang H-W, Hsu P-C, Tsai Y-C (2012) Ag/carbon nanotubes for surface-enhanced Raman scattering. In: Kumar CSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin Heidelberg, pp 119–135

    Chapter  Google Scholar 

  • Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanomaterials. Toxicol Sci 123:133–143

    Article  CAS  PubMed  Google Scholar 

  • Clogston J, Patri A (2011) Zeta potential measurement. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, pp 63–70

    Chapter  Google Scholar 

  • Cuche A, Masenelli B, Ledoux G, Amans D, Dujardin C, Sonnefraud Y et al (2009) Fluorescent oxide nanomaterials adapted to active tips for near-field optics. Nanotechnology 20:015603

    Article  CAS  PubMed  Google Scholar 

  • Das Neves J, Sarmento B, Amiji MM, Bahia MF (2010) Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanomaterials. J Pharm Biomed Anal 52:167–172

    Article  CAS  PubMed  Google Scholar 

  • Doane TL, Chuang C-H, Hill RJ, Burda C (2011) Nanomaterial ζ-potentials. Acc Chem Res 45:317–326

    Article  PubMed  Google Scholar 

  • Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Medina S, McDonough S, Swanglap P, Landes CF, Link S (2012) In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28:9131–9139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S (2010) Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 146:196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufrêne YF, Garcia-Parajo MF (2012) Recent progress in cell surface nanoscopy: light and force in the near-field. Nano Today 7:390–403

    Article  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141

    Article  CAS  PubMed  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med 9:1–14

    Article  CAS  Google Scholar 

  • Feng SS (2004) Nanomaterials of biodegradable polymers for new-concept chemotherapy. Expert Rev Med Devices 1:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3:131–132

    Article  CAS  PubMed  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming CJ, Liu YX, Deng Z, Liu GY (2009) Deformation and hyperfine structures of dendrimers investigated by scanning tunneling microscopy. J Phys Chem A 113:4168–4174

    Article  CAS  PubMed  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanomaterials. Environ Sci Technol 43:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Fujie T, Park JY, Murata A, Estillore NC, Tria MCR, Takeoka S et al (2009) Hydrodynamic transformation of a freestanding polymer nanosheet induced by a thermoresponsive surface. ACS Appl Mater Interfaces 1:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PS, Han G, Erdogan B, Rosado O, Krovi SA, Rotello VM (2007) Nanoparticles featuring amino acid functionalized side chains as DNA receptors. Chem Biol Drug Des 70:13–18

    Article  CAS  PubMed  Google Scholar 

  • Giddings JC (1966) A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci 1:123–125

    CAS  Google Scholar 

  • Giddings JC, Yang FJ, Myers MN (1976) Flow-field-flow fractionation: a versatile new separation method. Science 193:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Gmoshinski IV, Khotimchenko SA, Popov VO, Dzantiev BB, Zherdev AV, Demin VF et al (2013) Nanomaterials and nanotechnologies: methods of analysis and control. Russ Chem Rev 82:48

    Article  Google Scholar 

  • Gray EP, Bruton TA, Higgins CP et al (2012) Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J.Anal Atom Spectrom 27(9):1532–1539

    Article  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Grosso D, Ribot F, Boissiere C, Sanchez C (2011) Molecular and supramolecular dynamics of hybrid organic–inorganic interfaces for the rational construction of advanced hybrid nanomaterials. Chem Soc Rev 40:829–848

    Article  CAS  PubMed  Google Scholar 

  • Guay-Bégin A-A, Chevallier P, Faucher L, Turgeon S, Fortin M-A (2011) Surface modification of gadolinium oxide thin films and nanomaterials using poly(ethylene glycol)-phosphate. Langmuir 28:774–782

    Article  PubMed  Google Scholar 

  • Gun’ko V, Blitz J, Zarko V, Turov V, Pakhlov E, Oranska O et al (2009) Structural and adsorption characteristics and catalytic activity of titania and titania-containing nanomaterials. J Colloid Interface Sci 330:125–137

    Article  PubMed  Google Scholar 

  • Hachani R, Lowdell M, Birchall M, Thanh NT (2013) Tracking stem cells in tissue-engineered organs using magnetic nanomaterials. Nanoscale 5:11362–11372. https://doi.org/10.1039/c3nr03861k

    Article  CAS  PubMed  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (London) 2:789–803

    Article  CAS  Google Scholar 

  • Haranas I, Gkigkitzis I, Zouganelis GD (2012) g Dependent particle concentration due to sedimentation. Astrophys Space Sci 342(1):31–43

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Hayazawa N, Tarun A, Taguchi A, Furusawa K (2012) Tip-enhanced Raman spectroscopy. In: Kumar CSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin Heidelberg, pp 445–476

    Chapter  Google Scholar 

  • Hinterdorfer P, Garcia-Parajo MF, Dufrene YF (2012) Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 45:327–336

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Carney RP, Stellacci F, Lau BLT (2013) Protein–nanomaterial interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 5:6928–6935

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zong C, Shen H, Cao Y, Ren B, Zhang Z (2013a) Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale 5:10591–10598

    Google Scholar 

  • Hull M, Bowman D (2009) Nanotechnology environmental health and safety. Risks, regulation and management [Access Online via Elsevier]

    Google Scholar 

  • Hummer DR, Heaney PJ, Post JE (2012) In situ observations of particle size evolution during the hydrothermal crystallization of TiO2: a time-resolved synchrotron SAXS and WAXS study. J Cryst Growth 344:51–58

    Article  CAS  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanomaterial-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Qu W, Pan D, Ren Y, Williford JM, Cui H et al (2013) Plasmid-templated shape control of condensed DNA-block copolymer nanomaterials. Adv Mater 25:227–232

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Wang N, Xu L, Hou S (2010) Synthesis and conductivity of cerium oxide nanomaterials. Mater Lett 64:1254–1256

    Article  CAS  Google Scholar 

  • Jing B, Zhu Y (2011) Disruption of supported lipid bilayers by semihydrophobic nanomaterials. J Am Chem Soc 133:10983–10989

    Article  CAS  PubMed  Google Scholar 

  • Johal MS (2011) Understanding nanomaterials. CRC Press, Boca Raton

    Google Scholar 

  • Kane SR, Ashby PD, Pruitt LA (2009) ATR–FTIR as a thickness measurement technique for hydrated polymer-on-polymer coatings. J Biomed Mater Res B Appl Biomater 91:613–620

    Article  PubMed  Google Scholar 

  • Kattumenu R, Lee C, Bliznyuk V, Singamaneni S (2012) Micro-Raman spectroscopy of nanostructures. In: Kumar CSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin Heidelberg, pp 417–444

    Chapter  Google Scholar 

  • Kazarian SG, Chan KL (2006) Applications of ATR–FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta 1758:858–867

    Article  CAS  PubMed  Google Scholar 

  • Khatun Z, Nurunnabi M, Cho KJ, Lee Y-k (2012) Oral delivery of near-infrared quantum dot loaded micelles for noninvasive biomedical imaging. ACS Appl Mater Interfaces 4:3880–3887

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee S, Chen X (2013) Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 13:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6:214–226

    Article  CAS  Google Scholar 

  • Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Bürgi T (2010) Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J Am Chem Soc 132:16783–16789

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Muranaka A, Mack J (2011) Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. R Soc Chem. isbn:1847558690

    Google Scholar 

  • Kohli R, Mittal KL (2011) Developments in surface contamination and cleaning-detection, characterization, and analysis of contaminants. William Andrew

    Google Scholar 

  • Kumar CS (2012) Raman spectroscopy for nanomaterials characterization. Springer Verlag

    Book  Google Scholar 

  • Kumar J, Thomas KG (2011) Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions. J Phys Chem Lett 2:610–615

    Article  CAS  Google Scholar 

  • Laborda F, Bolea E, Cepriá G et al (2016) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–32

    Article  CAS  PubMed  Google Scholar 

  • Lavigne J-P, Espinal P, Dunyach-Remy C, Messad N, Pantel A, Sotto A (2013) Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med 51:257–270

    Article  CAS  PubMed  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanomaterials: current knowledge and future trends. Env Chem 3:159–171. (21) Anderson, D. Vive Crop Protection. Personal communication (Sept. 2014)

    Article  CAS  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11(9):2067–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanomaterial by dynamic light scattering. Nanoscale Res Lett 8:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J-J, Liu P, Geng X-D (2009) Hydrodynamic chromatography and slalom chromatography and their applications. Chin J Anal Chem 37(7):1082–1087

    Article  CAS  Google Scholar 

  • Li B, Chua SL, Ch’ng AL et al (2020) An effective approach for size characterization and mass quantification of silica nanoparticles in coffee creamer by AF4-ICP-MS. Anal Bioanal Chem 412(22):5499–5512

    Article  CAS  PubMed  Google Scholar 

  • Lin W-f, Li J-R, Liu G-y (2012) Near-field scanning optical microscopy enables direct observation of moiré effects at the nanometer scale. ACS Nano 6:9141–9149

    Article  CAS  PubMed  Google Scholar 

  • Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson N et al (2012) Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial”, Luxemburg

    Google Scholar 

  • Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  PubMed  Google Scholar 

  • Liu L, Ma Y, Chen X, Xiong X, Shi S (2012) Screening and identification of BSA bound ligands from Puerariae lobata flower by BSA functionalized Fe3O4 magnetic nanomaterials coupled with HPLC–MS/MS. J Chromatogr B 887–888:55–60

    Google Scholar 

  • Loconto PR (2012) Trace environmental quantitative analysis: principles, techniques and applications. CRC Press

    Google Scholar 

  • Lucas M, Riedo E (2012) Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. Rev Sci Instrum 83:061101

    Article  PubMed  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science, Oxford

    Google Scholar 

  • McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  CAS  PubMed  Google Scholar 

  • Messaud FA, Sanderson RD, Runyon JR et al (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34(4):351–368

    Article  CAS  Google Scholar 

  • Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanomaterials: soft and hard corona. ACS Nano 6:2532–2541

    Article  CAS  PubMed  Google Scholar 

  • Miles M, McMaster T, Carr H, Tatham A, Shewry P, Field J et al (1990) Scanning tunneling microscopy of biomolecules. J Vac Sci Technol A Vac Surf Films 8:698–702

    Article  CAS  Google Scholar 

  • Mirau PA, Naik RR, Gehring P (2011) Structure of peptides on metal oxide surfaces probed by NMR. J Am Chem Soc 133:18243–18248

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2009) In drug delivery, shape does matter. Pharm Res 26:232–234

    Article  CAS  PubMed  Google Scholar 

  • Mittal V, Lechner MD (2011) Sedimentation studies of single and bi-component polystyrene solutions in analytical ultracentrifugation by comparison of two analysis methods: effect of polymer concentration. Polym Bull 67(5):831–841

    Article  CAS  Google Scholar 

  • Murphy DB, Davidson MW (2012d) Polarization Microscopy. Fundamentals of light microscopy and electronic imaging. John Wiley & Sons, Hoboken, NJ, pp 153–171

    Google Scholar 

  • Nakaya M, Kuwahara Y, Aono M, Nakayama T (2011) Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope. J Nanosci Nanotechnol 11:2829–2835

    Article  CAS  PubMed  Google Scholar 

  • Nienhaus GU, Maffre P, Nienhaus K (2013) Studying the protein corona on nanoparticles by FCS. In: Sergey YT (ed) Methods in enzymology. Academic Press, pp 115–137

    Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong QK, Reguera J, Silva PJ, Moglianetti M, Harkness K, Longobardi M et al (2013) High-resolution scanning tunneling microscopy characterization of mixed monolayer protected gold nanomaterials. ACS Nano 7:8529–8539

    Article  CAS  PubMed  Google Scholar 

  • Ortega A, Pamies R, Zhu KZ, Kjoniksen AL, Nystrom B, de la Torre JG (2012) Characterization of low molecular mass thermosensitive diblock copolymers and their self-assembly by means of analytical ultracentrifugation. Colloid Polym Sci 290(4):297–306

    Article  CAS  Google Scholar 

  • Otten MT (1991) High-angle annular dark-field imaging on a tem/stem system. J Electron Microsc Tech 17(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Pan G-H, Barras A, Boussekey L, Qu X, Addad A, Boukherroub R (2013) Preparation and characterization of decyl-terminated silicon nanomaterials encapsulated in lipid nanocapsules. Langmuir 29:12688–12696

    Article  CAS  PubMed  Google Scholar 

  • Park HK, Lim YT, Kim JK, Park HG, Chung BH (2008) Nanoscopic observation of a gold nanoparticle conjugated protein using near-field scanning optical microscopy. Ultramicroscopy 108:1115–1119

    Article  CAS  PubMed  Google Scholar 

  • Patri A, Dobrovolskaia M, Stern S, McNeil S, Amiji M (2006) Nanotechnology for cancer therapy. CRC Press, Preclinical characterization of engineered nanoparticles intended for cancer therapeutics, pp 105–138

    Book  Google Scholar 

  • Perevedentseva E, Cai PJ, Chiu YC, Cheng CL (2010) Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27:1085–1091

    Article  PubMed  Google Scholar 

  • Pergantis SA, Jones-Lepp TL, Heithmar EM (2012) Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanomaterials. Anal Chem 84(15):6454–6462

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov MV, Svergun DI (2013) Applications of small-angle X-ray scattering to biomacromolecular solutions. Int J Biochem Cell Biol 45:429–437

    Article  CAS  PubMed  Google Scholar 

  • Pleus R. Nanotechnologies—guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment; 2012

    Google Scholar 

  • Pons T, Medintz IL, Wang X, English DS, Mattoussi H (2006) Solution-phase single quantum dot fluorescence resonance energy transfer. J Am Chem Soc 128:15324–15331

    Article  CAS  PubMed  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  CAS  PubMed  Google Scholar 

  • Popovic ZV, Dohcevic-Mitrovic Z, Scepanovic M, Grujic-Brojcin M, Askrabic S (2011) Raman scattering on nanomaterials and nanostructures. Ann Phys 523:62–74

    Article  CAS  Google Scholar 

  • Rahman M, Laurent S, Tawil N, Yahia LH, Mahmoudi M (2013) Protein–nanoparticle interactions. Springer, Analytical methods for corona evaluations. Berlin Heidelberg, pp 65–82

    Book  Google Scholar 

  • Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses — a review. Chem Biol Drug Des 74:101–120

    Article  CAS  PubMed  Google Scholar 

  • Rao CNR, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Anal Chem:435–462

    Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Academic Press

    Google Scholar 

  • Ratnikova TA, Nedumpully Govindan P, Salonen E, Ke PC (2011) In vitro polymerization of microtubules with a fullerene derivative. ACS Nano 5:6306–6314

    Article  CAS  PubMed  Google Scholar 

  • Romani A, Clementi C, Miliani C, Favaro G (2010) Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork. Acc Chem Res 43:837–846

    Article  CAS  PubMed  Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bio conjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4458

    Article  CAS  PubMed  Google Scholar 

  • Schacher F, Betthausen E, Walther A, Schmalz H, Pergushov DV, Müller AHE (2009) Interpolyelectrolyte complexes of dynamic multicompartment micelles. ACS Nano 3:2095–2102

    Article  CAS  PubMed  Google Scholar 

  • Schaefer J, Schulze C, Marxer EE, Schaefer UF, Wohlleben W, Bakowsky U et al (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6:4603–4614

    Article  CAS  PubMed  Google Scholar 

  • Schwaferts C, Niessner R, Elsner M et al (2019) Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal Chem 112:52–65

    Article  CAS  Google Scholar 

  • Shang L, Wang Y, Jiang J, Dong S (2007) pH-Dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    Article  CAS  PubMed  Google Scholar 

  • Shekunov BY, Chattopadhyay P, Tong HH, Chow AH (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24:203–227

    Article  CAS  PubMed  Google Scholar 

  • Sinjab F, Lekprasert B, Woolley RAJ, Roberts CJ, Tendler SJB, Notingher I (2012) Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips. Opt Lett 37:2256–2258

    Article  CAS  PubMed  Google Scholar 

  • Snyder LR, Kirkland JJ, Dolan JW (2011) Introduction to modern liquid chromatography. John Wiley & Sons

    Google Scholar 

  • Sohaebuddin S, Thevenot P, Baker D, Eaton J, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Xu B, Wu B, Germann MW, Wang G (2010) Synthesis and structural determination of multidentate 2,3-dithiol-stabilized au clusters. J Am Chem Soc 132:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821

    Article  CAS  Google Scholar 

  • Tomalia DA, Huang B, Swanson DR, Brothers HM, Klimash JW (2003) Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedron 59:3799–3813

    Article  CAS  Google Scholar 

  • Uskokovic V (2012) Dynamic light scattering based microelectrophoresis: main prospects and limitations. J Disper Sci Technol 33:1762–1786

    Article  CAS  Google Scholar 

  • Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy filtered transmission electron microscopy to the characterization of nanopar. Environ Sci Technol 37(4):786–791

    Article  CAS  PubMed  Google Scholar 

  • Vancso GJ, Hillborg H, Schönherr H (2005) Polymer analysis polymer theory. Chemical composition of polymer surfaces imaged by atomic force microscopy and complementary approaches. Springer, Berlin Heidelberg, pp 55–129

    Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanomaterial size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  CAS  PubMed  Google Scholar 

  • Vobornik D, Banks DS, Lu Z, Fradin C, Taylor R, Johnston LJ (2008) Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Appl Phys Lett 93

    Google Scholar 

  • Wagner AJ, Bleckmann CA, Murdock RC, Schrand AM, Schlager JJ, Hussain SM (2007) Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B 111:7353–7359

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL (2001) Characterization of nanophase materials. Transmission electron microscopy and spectroscopy of nanoparticles. Wiley-VCH Verlag: GmbH, pp 37–80

    Google Scholar 

  • Wang H, Chu PK (2013) Chapter 4—surface characterization of biomaterials. In: Amit B, Susmita B (eds) Characterization of biomaterials. Academic Press, Oxford, pp 105–174

    Chapter  Google Scholar 

  • Webster TJ (2006) Nanomedicine: what's in a definition? Int J Nanomedicine 1:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiner BB, Tscharnuter WW, Fairhurst D (1993) Zeta potential: a new approach, vol 1. Brookhaven Instruments Corporation, New York, p 115

    Google Scholar 

  • Williams DB, Carter CB (2009) The transmission electron microscope. Transmission electron microscopy. Springer, pp 3–22

    Google Scholar 

  • Wilson AJ, Willets KA (2013) Surface-enhanced Raman scattering imaging using noble metal nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:180–189

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Nyagilo J, Arora V, Kulkarni P, Xu D, Sun X et al (2010) Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography. Nanotechnology 21:035101

    Article  PubMed  Google Scholar 

  • Xu R (2008) Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 6:112–115

    Article  CAS  Google Scholar 

  • Zanchet D, Hall BD, Ugarte D (2001) Characterization of nanophase materials. X-ray characterization of nanoparticles. Wiley-VCH Verlag: GmbH, pp 13–36

    Google Scholar 

  • Zak AK, Majid W, Darroudi M, Yousefi R (2011) Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett 65:70–73

    Article  CAS  Google Scholar 

  • Zhao Y, Qiu X, Burda C (2008) The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chem Mater 20:2629–2636

    Article  CAS  Google Scholar 

  • Zhao T, Chen K, Gu H (2013) Investigations on the interactions of proteins with polyampholyte-coated magnetite nanomaterials. J Phys Chem B 117:14129–14135. https://doi.org/10.1021/jp407157n

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Liu Z, Du X, Mitchell DR, Mai YW, Yan Y et al (2012) Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Res Lett 7:165

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azad, A.K., Zohera, F.T., Thanapakiam, G. (2024). Physiochemical Characterization Technique of Bionanomaterials. In: Ahmed, S. (eds) Biobased Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-0542-9_4

Download citation

Publish with us

Policies and ethics