Skip to main content

Exploring the ‘Dormancy Activation Switch’ in the Tumour Microenvironment for Metastatic Lung Cancer: The Possible Role of MicroRNA

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Lung cancer produces the highest mortality rate among cancers, mainly due to its late diagnosis accompanied by single or multiple organ metastasis to the lymph node, pleura, liver, brain and/or bones. In this chapter, we will review the major cellular signalling pathways that promote the proliferation and metastasis of lung cancer cells to each of these metastatic sites, hopefully to shine the light on the possible therapeutic targets that could be developed against these pathways for better therapeutic outcome. Cellular pathways including MAPK, CXCR4/CXCL12, ALK, Rho/ROCK, PI3K and RANK/RANKL signalling will be elaborated in relation to their roles in lymph node, pleura, liver, brain and bone metastasis of lung cancer, respectively. The blooming understanding of microRNA (miRNA) in lung cancer in these recent years has shown that it could play bi-faceted roles in modulating oncogenic pathways. Thus, we also briefly described the candidates of miRNA that may either promote or inhibit the key pathways in lung cancer with various metastatic sites.

Both Siti Fathiah Masre and Amnani Aminuddin are first authors of the book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Petersen I (2011) The morphological and molecular diagnosis of lung cancer. Dtsch Aerzteblatt Online 108:525–531. https://doi.org/10.3238/arztebl.2011.0525

    Article  Google Scholar 

  3. Rutering J, Ilmer M, Recio A et al (2016) Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients. Nat Med 5:1–8. https://doi.org/10.4172/2157-7633.1000305.Improved

    Article  Google Scholar 

  4. Popper HH (2016) Progression and metastasis of lung cancer. Cancer Metastasis Rev 35:75–91. https://doi.org/10.1007/s10555-016-9618-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shin DY, Na II, Kim CH et al (2014) EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol 9:195–199. https://doi.org/10.1097/JTO.0000000000000069

    Article  CAS  PubMed  Google Scholar 

  6. Tamura T, Koichi K, Kensuke N et al (2015) Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol Clin Oncol 3:217–221. https://doi.org/10.3892/mco.2014.410

    Article  PubMed  Google Scholar 

  7. Wilbertz T, Wagner P, Petersen K et al (2011) SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol 24:944–953. https://doi.org/10.1038/modpathol.2011.49

    Article  CAS  PubMed  Google Scholar 

  8. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  9. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):p11. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  Google Scholar 

  10. Wang S, Wang Z (2015) Meta-analysis of epidermal growth factor receptor and KRAS gene status between primary and corresponding metastatic tumours of non-small cell lung cancer. Clin Oncol 27:30–39. https://doi.org/10.1016/j.clon.2014.09.014

    Article  CAS  Google Scholar 

  11. World Health Organization (2019) European tobacco use: trends report 2019

    Google Scholar 

  12. Hasegawa Y (2014) Lung cancer: progress in diagnosis and treatments. Topics: I. Epidemiology and pathogenesis; 2. The etiology of lung cancer. Nihon Naika Gakkai Zasshi 103:1261–1266. https://doi.org/10.2169/naika.103.1261

    Article  PubMed  Google Scholar 

  13. Thun MJ, Carter BD, Feskanich D et al (2013) 50-Year trends in smoking-related mortality in the United States. N Engl J Med 368:351–364. https://doi.org/10.1056/NEJMsa1211127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nasim F, Sabath BF, Eapen GA (2019) Lung cancer. Med Clin North Am 103:463–473. https://doi.org/10.1016/j.mcna.2018.12.006

    Article  PubMed  Google Scholar 

  15. O’Malley M, King AN, Conte M et al (2014) Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol 9:917–926. https://doi.org/10.1097/JTO.0000000000000191

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi F, Nicassio F, Marzi M et al (2011) A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med 3:495–503. https://doi.org/10.1002/emmm.201100154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang W, Hu J, Yang DW et al (2012) Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 186:1160–1167. https://doi.org/10.1164/rccm.201203-0534OC

    Article  PubMed  Google Scholar 

  18. Lu Y, Govindan R, Wang L et al (2012) MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis 33:1046–1054. https://doi.org/10.1093/carcin/bgs100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu KL, Tsai YM, Lien CT et al (2019b) The roles of microRNA in lung cancer. Int J Mol Sci 20(7):1611

    Article  CAS  PubMed Central  Google Scholar 

  20. Wu SG, Chang TH, Liu YN, Shih JY (2019c) MicroRNA in lung cancer metastasis. Cancers (Basel) 11:265

    Article  CAS  Google Scholar 

  21. Dillekås H, Rogers MS, Straume O (2019) Are 90% of deaths from cancer caused by metastases? Cancer Med 8:5574–5576. https://doi.org/10.1002/cam4.2474

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  23. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39:397–410. https://doi.org/10.1007/s13402-016-0281-9

    Article  CAS  Google Scholar 

  24. Mani SA, Guo W, Liao MJ et al (2008) The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu XG, Zhu WY, Huang YY et al (2012) High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol 29:618–626. https://doi.org/10.1007/s12032-011-9923-y

    Article  CAS  PubMed  Google Scholar 

  26. Wu C, Cao Y, He Z et al (2014) Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med 232:85–95. https://doi.org/10.1620/tjem.232.85

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang T, Zhang Y et al (2018) Upregulation of serum miR-494 predicts poor prognosis in non-small cell lung cancer patients. Cancer Biomark 21:763–768. https://doi.org/10.3233/CBM-170337

    Article  CAS  PubMed  Google Scholar 

  28. Osugi J, Kimura Y, Owada Y et al (2015) Prognostic impact of hypoxia-inducible miRNA-210 in patients with lung adenocarcinoma. J Oncol 2015:1–8. https://doi.org/10.1155/2015/316745

    Article  Google Scholar 

  29. Li Y, Cui X, Li Y et al (2018a) Upregulated expression of miR-421 is associated with poor prognosis in non-small-cell lung cancer. Cancer Manag Res 10:2627–2633. https://doi.org/10.2147/CMAR.S167432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang SY, Li Y, Jiang YS, Li RZ (2017a) Investigation of serum miR-411 as a diagnosis and prognosis biomarker for non-small cell lung cancer. Eur Rev Med Pharmacol Sci 21:4092–4097

    PubMed  Google Scholar 

  31. Han L, Zhang G, Zhang N et al (2014) Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer. Med Oncol 31:1–7. https://doi.org/10.1007/s12032-014-0129-y

    Article  CAS  Google Scholar 

  32. Yang ZQ, Wu CA, Cheng YX (2018) Prognostic Value of microRNA-133a expression and its clinicopathologic significance in non-small cell lung cancer: a comprehensive study based on meta-analysis and the tcga database. Oncol Res Treat 41:762–768. https://doi.org/10.1159/000492343

    Article  CAS  PubMed  Google Scholar 

  33. Gan X, Luo J, Tang R et al (2017b) Clinical value of miR-452-5p expression in lung adenocarcinoma: a retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases. Tumor Biol 39:101042831770575. https://doi.org/10.1177/1010428317705755

    Article  CAS  Google Scholar 

  34. Gan TQ, Xie ZC, Tang RX et al (2017a) Clinical value of miR-145-5p in NSCLC and potential molecular mechanism exploration: a retrospective study based on GEO, qRT-PCR, and TCGA data. Tumor Biol 39:1–23. https://doi.org/10.1177/1010428317691683

    Article  CAS  Google Scholar 

  35. Lu HM, Yi WW, Ma YS et al (2018) Prognostic implications of decreased microRNA-101-3p expression in patients with non-small cell lung cancer. Oncol Lett 16:7048–7056. https://doi.org/10.3892/ol.2018.9559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li J, Tan Q, Yan M et al (2014) MiRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer 13:166. https://doi.org/10.1186/1476-4598-13-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou L, Luo P, Ma Y et al (2017) MicroRNA-125a-3p downregulation correlates with tumorigenesis and poor prognosis in patients with non-small cell lung cancer. Oncol Lett 14:4441–4448. https://doi.org/10.3892/ol.2017.6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu X, Wei F, Yu J et al (2015) Matrix metalloproteinase 13: a potential intermediate between low expression of microRNA-125b and increasing metastatic potential of non-small cell lung cancer. Cancer Genet 208:76–84. https://doi.org/10.1016/j.cancergen.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  39. Wang XC, Tian LL, Wu HL et al (2010) Expression of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci 340:385–388. https://doi.org/10.1097/MAJ.0b013e3181e892a0

    Article  PubMed  Google Scholar 

  40. Ye L, Wang Y, Nie L et al (2017) MiR-130 exerts tumor suppressive function on the tumorigenesis of human non-small cell lung cancer by targeting PTEN. Am J Transl Res 9:1856–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roman-Canal B, Moiola CP, Gatius S et al (2019) EV-associated miRNAs from pleural lavage as potential diagnostic biomarkers in lung cancer. Sci Rep 9:15057. https://doi.org/10.1038/s41598-019-51578-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamiya H, Mitani A, Saito A et al (2018) Exosomal MicroRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res 38:6707–6714. https://doi.org/10.21873/anticanres.13039

    Article  CAS  PubMed  Google Scholar 

  43. Singh M, Garg N, Venugopal C et al (2015) STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget 6:27461–27477. https://doi.org/10.18632/oncotarget.4742

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wei C-H, Wu G, Cai Q et al (2017a) MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol 10:125. https://doi.org/10.1186/s13045-017-0493-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun G, Ding X, Bi N et al (2018) MiR-423-5p in brain metastasis: potential role in diagnostics and molecular biology. Cell Death Dis 9:936. https://doi.org/10.1038/s41419-018-0955-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Feng Q, Wei X, Yu Y (2016) MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumor Biol 37:15221–15228. https://doi.org/10.1007/s13277-016-5347-9

    Article  CAS  Google Scholar 

  47. Arora S, Ranade AR, Tran NL et al (2011) MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 129:2621–2631. https://doi.org/10.1002/ijc.25939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen LT, Xu SD, Xu H et al (2012) MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol 29:1673–1680. https://doi.org/10.1007/s12032-011-0083-x

    Article  CAS  PubMed  Google Scholar 

  49. Hwang SJ, Lee HW, Kim HR et al (2015) Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget 6:20434–20448. https://doi.org/10.18632/oncotarget.3886

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao C, Xu Y, Zhang Y et al (2013) Downregulation of miR-145 contributes to lung adenocarcinoma cell growth to form brain metastases. Oncol Rep 30:2027–2034. https://doi.org/10.3892/or.2013.2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen LJ, Li XY, Zhao YQ et al (2017) Down-regulated microRNA-375 expression as a predictive biomarker in non-small cell lung cancer brain metastasis and its prognostic significance. Pathol Res Pract 213:882–888. https://doi.org/10.1016/j.prp.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  52. Wang FF, Wang S, Xue WH, Cheng JL (2016) microRNA-590 suppresses the tumorigenesis and invasiveness of non-small cell lung cancer cells by targeting ADAM9. Mol Cell Biochem 423:29–37. https://doi.org/10.1007/s11010-016-2822-y

    Article  CAS  PubMed  Google Scholar 

  53. He X, Chen S, Yang Z et al (2018) miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J Exp Clin Cancer Res 37:230. https://doi.org/10.1186/s13046-018-0882-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo Q, Zhang H, Zhang L et al (2015) MicroRNA-21 regulates non-small cell lung cancer cell proliferation by affecting cell apoptosis via COX-19. Int J Clin Exp Med 8:8835–8841

    PubMed  PubMed Central  Google Scholar 

  55. Wang X, Liu S, Zhou Z et al (2017b) A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer. Tumor Biol 39(5):1010428317701633. https://doi.org/10.1177/1010428317701633

    Article  CAS  Google Scholar 

  56. Kuo PL, Liao SH, Hung JY et al (2013) MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta Gen Subj 1830:3756–3766. https://doi.org/10.1016/j.bbagen.2013.02.022

    Article  CAS  Google Scholar 

  57. Xu S, Yang F, Liu R et al (2018) Serum microRNA-139-5p is downregulated in lung cancer patients with lytic bone metastasis. Oncol Rep 39:2376–2384. https://doi.org/10.3892/or.2018.6316

    Article  CAS  PubMed  Google Scholar 

  58. Valencia K, Luis-Ravelo D, Bovy N et al (2014) MiRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8:689–703. https://doi.org/10.1016/j.molonc.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei Y, Li D, Wang D et al (2017b) Evaluation of microRNA-203 in bone metastasis of patients with non-small cell lung cancer through TGF-β/SMAD2 expression. Oncol Rep. https://doi.org/10.3892/or.2017.5987

  60. Hu X, Luo J (2018) Heterogeneity of tumor lymphangiogenesis: progress and prospects. Cancer Sci 109:3005–3012. https://doi.org/10.1111/cas.13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aguadé-Gorgorió G, Solé R (2019) Genetic instability as a driver for immune surveillance. J Immunother Cancer 7:345. https://doi.org/10.1186/s40425-019-0795-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Regan E, Sibley RC, Cenik BK et al (2016) Identification of gene expression differences between lymphangiogenic and non-lymphangiogenic non-small cell lung cancer cell lines. PLoS One 11(3):e0150963. https://doi.org/10.1371/journal.pone.0150963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang Q, Zhang Z, Liao Y et al (2018) 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. J Exp Clin Cancer Res 37:133. https://doi.org/10.1186/s13046-018-0804-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Ye Z, Chen S et al (2018b) ARHGEF19 interacts with BRAF to activate MAPK signaling during the tumorigenesis of non-small cell lung cancer. Int J Cancer 142:1379–1391. https://doi.org/10.1002/ijc.31169

    Article  CAS  PubMed  Google Scholar 

  66. Wu JI, Lin YP, Tseng CW et al (2019a) Crabp2 promotes metastasis of lung cancer cells via HuR and integrin β1/FAK/ERK signaling. Sci Rep 9:845. https://doi.org/10.1038/s41598-018-37443-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang N, Zhang SW (2019) Identification of differentially expressed genes between primary lung cancer and lymph node metastasis via bioinformatic analysis. Oncol Lett 18:3754–3768. https://doi.org/10.3892/ol.2019.10723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao W, Wang J, Zhu B et al (2016) IGFBP7 functions as a potential lymphangiogenesis inducer in non-small cell lung carcinoma. Oncol Rep 35:1483–1492. https://doi.org/10.3892/or.2015.4516

    Article  CAS  PubMed  Google Scholar 

  69. Zhang ZF, Ma JQ, Zhang L (2005) Expression and clinical significance of MAPK in non-small cell lung cancer. Natl Med J China 85:339–342

    CAS  Google Scholar 

  70. Chuang HC, Chang CC, Teng CF et al (2019) MAP 4K3/GLk promotes lung cancer metastasis by phosphorylating and activating IQGAP1. Cancer Res 79:4978–4993. https://doi.org/10.1158/0008-5472.CAN-19-1402

    Article  CAS  PubMed  Google Scholar 

  71. Guo Y, Pan W, Liu S et al (2020) ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 19:1997–2007. https://doi.org/10.3892/etm.2020.8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hung P-S, Huang M-H, Kuo Y-Y, Yang JC-H (2020) The Inhibition of Wnt Restrain KRASG12V-Driven Metastasis in Non-Small-Cell Lung Cancer. Cancers (Basel) 12:837. https://doi.org/10.3390/cancers12040837

    Article  CAS  Google Scholar 

  73. Wakamatsu N, Collins JB, Parker JS et al (2008) Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors. Toxicol Pathol 36:743–752. https://doi.org/10.1177/0192623308320801

    Article  CAS  PubMed  Google Scholar 

  74. Du Rand I, Maskell N (2010) British Thoracic Society pleural disease guideline 2010. Br Thorac Soc 65:ii1–ii3. https://doi.org/10.1136/thx.2010.137042

    Article  Google Scholar 

  75. Charalampidis C, Youroukou A, Lazaridis G et al (2015) Pleura space anatomy. J Thorac Dis 7:S27–S32. https://doi.org/10.3978/j.issn.2072-1439.2015.01.48

    Article  PubMed  PubMed Central  Google Scholar 

  76. Donnenberg AD, Luketich JD, Dhupar R, Donnenberg VS (2019) Treatment of malignant pleural effusions: the case for localized immunotherapy. J Immunother Cancer 7:5–9. https://doi.org/10.1186/s40425-019-0590-4

    Article  Google Scholar 

  77. Psallidas I, Kalomenidis I, Porcel JM et al (2016) Malignant pleural effusion: from bench to bedside. Eur Respir Rev 25:189–198. https://doi.org/10.1183/16000617.0019-2016

    Article  PubMed  Google Scholar 

  78. Semaan R, Feller-Kopman D, Slatore C et al (2016) Malignant pleural effusions. Am J Respir Crit Care Med 194:P11–P12. https://doi.org/10.1164/rccm.1946P11

    Article  PubMed  Google Scholar 

  79. Li T, Li H, Wang Y et al (2011) The expression of CXCR4, CXCL12 and CXCR7 in malignant pleural mesothelioma. J Pathol 223:519–530. https://doi.org/10.1002/path.2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang JX, Gao W, Liang Y, Zhou XM (2015) Chemokine receptor CXCR4 expression and lung cancer prognosis: a meta-analysis. Int J Clin Exp Med 8:5163–5174

    PubMed  PubMed Central  Google Scholar 

  81. Oonakahara K, Matsuyama W, Higashimoto I et al (2004) Stromal-derived factor-1α/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol 30:671–677. https://doi.org/10.1165/rcmb.2003-0340OC

    Article  CAS  PubMed  Google Scholar 

  82. Cavallaro S (2013) CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci 14:1713–1727. https://doi.org/10.3390/ijms14011713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo F, Wang Y, Liu J et al (2016) CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35:816–826. https://doi.org/10.1038/onc.2015.139

    Article  CAS  PubMed  Google Scholar 

  84. Porcile C, Bajetto A, Barbieri F et al (2005) Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308:241–253. https://doi.org/10.1016/j.yexcr.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  85. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12:3–20. https://doi.org/10.1002/1878-0261.12155

    Article  PubMed  Google Scholar 

  86. Zou JY, Bella AE, Chen ZG et al (2014) Frequency of EGFR mutations in lung adenocarcinoma with malignant pleural effusion: implication of cancer biological behaviour regulated by EGFR mutation. J Int Med Res 42:1110–1117. https://doi.org/10.1177/0300060514539273

    Article  CAS  PubMed  Google Scholar 

  87. Phillips RJ, Mestas J, Gharaee-Kermani M et al (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia ind. J Biol Chem 280:22473–22481. https://doi.org/10.1074/jbc.M500963200

    Article  CAS  PubMed  Google Scholar 

  88. Maulik G, Kijima T, Salgia R (2003) Role of receptor tyrosine kinases in lung cancer. In: Lung cancer. Humana Press, Totowa, NJ, pp 113–126

    Google Scholar 

  89. Wang H, Liu W, Wei D et al (2014) Effect of the LPA-mediated CXCL12-CXCR4 axis in the tumor proliferation, migration and invasion of ovarian cancer cell lines. Oncol Lett 7:1581–1585. https://doi.org/10.3892/ol.2014.1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shelton EL, Galindo CL, Williams CH et al (2013) Autotaxin signaling governs phenotypic heterogeneity in visceral and parietal mesothelia. PLoS One 8:e69712. https://doi.org/10.1371/journal.pone.0069712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chu X, Wei X, Lu S, He P (2015) Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. Int J Clin Exp Med 8:17117–17122

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ueda N, Minami K, Ishimoto K, Tsujiuchi T (2020) Effects of lysophosphatidic acid (LPA) receptor-2 (LPA2) and LPA3 on the regulation of chemoresistance to anticancer drug in lung cancer cells. Cell Signal 69:109551. https://doi.org/10.1016/j.cellsig.2020.109551

    Article  CAS  PubMed  Google Scholar 

  93. Houben AJS, Moolenaar WH (2011) Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 30:557–565. https://doi.org/10.1007/s10555-011-9319-7

    Article  CAS  PubMed  Google Scholar 

  94. Ren Y, Dai C, Zheng H et al (2016) Prognostic effect of liver metastasis in lung cancer patients with distant metastasis. Oncotarget 7:53245–53253. https://doi.org/10.18632/oncotarget.10644

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shiroyama T, Suzuki H, Tamiya M et al (2018) Clinical characteristics of liver metastasis in nivolumabtreated patients with non-small cell lung cancer. Anticancer Res 38:4723–4729. https://doi.org/10.21873/anticanres.12779

    Article  CAS  PubMed  Google Scholar 

  96. Xu Z, Yang Q, Chen X et al (2019) Clinical associations and prognostic value of site-specific metastases in non-small cell lung cancer: a population-based study. Oncol Lett 17:5590–5600. https://doi.org/10.3892/ol.2019.10225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kagohashi K, Satoh H, Ishikawa H et al (2003) Liver metastasis at the time of initial diagnosis of lung cancer. Med Oncol 20:25–28. https://doi.org/10.1385/MO:20:1:25

    Article  PubMed  Google Scholar 

  98. Mishima S, Nozaki Y, Mikami S et al (2015) Diffuse liver metastasis of small-cell lung cancer presenting as acute liver failure and diagnosed by transjugular liver biopsy: a rare case in whom nodular lesions were detected by enhanced CT examination. Case Rep Gastroenterol 9:81–87. https://doi.org/10.1159/000381140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Riihimäki M, Hemminki A, Fallah M et al (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86:78–84. https://doi.org/10.1016/j.lungcan.2014.07.020

    Article  PubMed  Google Scholar 

  100. Nakazawa K, Kurishima K, Tamura T et al (2012) Specific organ metastases and survival in small cell lung cancer. Oncol Lett 4:617–620. https://doi.org/10.3892/ol.2012.792

    Article  PubMed  PubMed Central  Google Scholar 

  101. Doebele RC, Lu X, Sumey C et al (2012) Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 118:4502–4511. https://doi.org/10.1002/cncr.27409

    Article  CAS  PubMed  Google Scholar 

  102. Kuijpers CCHJ, Hendriks LEL, Derks JL et al (2018) Association of molecular status and metastatic organs at diagnosis in patients with stage IV non-squamous non-small cell lung cancer. Lung Cancer 121:76–81. https://doi.org/10.1016/j.lungcan.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  103. Golding B, Luu A, Jones R, Viloria-Petit AM (2018) The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer 17:1–15. https://doi.org/10.1186/s12943-018-0810-4

    Article  CAS  Google Scholar 

  104. Murray PB, Lax I, Reshetnyak A et al (2015) Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Sci Signal 8:1–8. https://doi.org/10.1126/scisignal.2005916

    Article  CAS  Google Scholar 

  105. Sakagami H, Hashimoto KEN, Suzuki F et al (2008) Tumor-specificity and type of cell death induced by vitamin K2 derivatives and prenylalcohols. Anticancer Res 158:151–158

    Google Scholar 

  106. Voena C, Varesio LM, Zhang L et al (2016) Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 7:33316–33330. https://doi.org/10.18632/oncotarget.8955

    Article  PubMed  PubMed Central  Google Scholar 

  107. An R, Wang Y, Voeller D et al (2016) CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma. Oncotarget 7:29199–29210. https://doi.org/10.18632/oncotarget.8638

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cooke M, Baker MJ, Kazanietz MG (2020) Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Front Cell Dev Biol 8:1–7. https://doi.org/10.3389/fcell.2020.00118

    Article  Google Scholar 

  109. Schmid S, Gautschi O, Rothschild S et al (2017) Clinical outcome of ALK-Positive Non–Small Cell Lung Cancer (NSCLC) patients with de novo EGFR or KRAS co-mutations receiving tyrosine kinase inhibitors (TKIs). J Thorac Oncol 12:681–688. https://doi.org/10.1016/j.jtho.2016.12.003

    Article  PubMed  Google Scholar 

  110. Marino FZ, Ronchi A, Accardo M, Franco R (2017) Concomitant ALK/KRAS and ALK/EGFR mutations in non small cell lung cancer: different profile of response to target therapies. Transl Cancer Res 6:S457–S460. https://doi.org/10.21037/tcr.2017.03.77

    Article  Google Scholar 

  111. Sweis RF, Thomas S, Bank B et al (2016) Concurrent EGFR mutation and ALK translocation in non-small cell lung cancer. Cureus 8. https://doi.org/10.7759/cureus.513

  112. Gonzales CB, De La Chapa JJ, Saikumar P et al (2016) Co-targeting ALK and EGFR parallel signaling in oral squamous cell carcinoma. Oral Oncol 59:12–19. https://doi.org/10.1016/j.oraloncology.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miyawaki M, Yasuda H, Tani T et al (2017) Overcoming EGFR bypass signal-induced acquired resistance to ALK tyrosine kinase inhibitors in ALK-translocated lung cancer. Mol Cancer Res 15:106–114. https://doi.org/10.1158/1541-7786.MCR-16-0211

    Article  CAS  PubMed  Google Scholar 

  114. Meng DF, Xie P, Peng LX et al (2017) CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. J Exp Clin Cancer Res 36:21. https://doi.org/10.1186/s13046-016-0483-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tonucci FM, Almada E, Borini-Etichetti C et al (2019) Identification of a CIP4 PKA phosphorylation site involved in the regulation of cancer cell invasiveness and metastasis. Cancer Lett 461:65–77. https://doi.org/10.1016/j.canlet.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  116. Truesdell P, Ahn J, Chander H et al (2015) CIP4 promotes lung adenocarcinoma metastasis and is associated with poor prognosis. Oncogene 34:3527–3535. https://doi.org/10.1038/onc.2014.280

    Article  CAS  PubMed  Google Scholar 

  117. Gaspar LE (2004) Brain metastases in lung cancer. Expert Rev Anticancer Ther 4:259–270. https://doi.org/10.1586/14737140.4.2.259

    Article  CAS  PubMed  Google Scholar 

  118. Mujoomdar A, Austin JHM, Malhotra R et al (2007) Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: primary tumor size, cell type, and lymph node metastases. Radiology 242:882–888. https://doi.org/10.1148/radiol.2423051707

    Article  PubMed  Google Scholar 

  119. Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872. https://doi.org/10.1200/JCO.2004.12.149

    Article  PubMed  Google Scholar 

  120. Davis FG, Dolecek TA, McCarthy BJ, Villano JL (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology 14:1171–1177. https://doi.org/10.1093/neuonc/nos152

    Article  PubMed  PubMed Central  Google Scholar 

  121. Valiente M, Obenauf AC, Jin X et al (2014) Serpins promote cancer cell survival and vascular Co-option in brain metastasis. Cell 156:1002–1016. https://doi.org/10.1016/j.cell.2014.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim SW, Choi HJ, Lee HJ et al (2014) Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro-Oncology 16:1585–1598. https://doi.org/10.1093/neuonc/nou128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen Q, Boire A, Jin X et al (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533:493–498. https://doi.org/10.1038/nature18268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ellenbroek SIJ, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672. https://doi.org/10.1007/s10585-007-9119-1

    Article  CAS  PubMed  Google Scholar 

  125. Masre SF, Rath N, Olson MF, Greenhalgh DA (2017) ROCK2/rasHa co-operation induces malignant conversion via p53 loss, elevated NF-κB and tenascin C-associated rigidity, but p21 inhibits ROCK2/NF-κB-mediated progression. Oncogene 36:2529–2542. https://doi.org/10.1038/onc.2016.402

    Article  CAS  PubMed  Google Scholar 

  126. Masre SF, Rath N, Olson MF, Greenhalgh DA (2020) Epidermal ROCK2 induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin C; but enhanced differentiation and p53/p21 inhibit papilloma. Carcinogenesis. https://doi.org/10.1093/carcin/bgz205

  127. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vasc Pharmacol 39:187–199. https://doi.org/10.1016/S1537-1891(03)00008-9

    Article  CAS  Google Scholar 

  128. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  129. Hanibuchi M, Kim SJ, Fidler IJ, Nishioka Y (2014) The molecular biology of lung cancer brain metastasis: an overview of current comprehensions and future perspectives. J Med Investig 61:241–253

    Article  Google Scholar 

  130. Li B, Zhao WD, Tan ZM et al (2006) Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 580:4252–4260. https://doi.org/10.1016/j.febslet.2006.06.056

    Article  CAS  PubMed  Google Scholar 

  131. Maekawa M, Ishizaki T, Boku S et al (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898. https://doi.org/10.1126/science.285.5429.895

    Article  CAS  PubMed  Google Scholar 

  132. Chang YC, Stins MF, McCaffery MJ et al (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72:4985–4995. https://doi.org/10.1128/IAI.72.9.4985-4995.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284. https://doi.org/10.1074/jbc.M210063200

    Article  CAS  PubMed  Google Scholar 

  134. Li B, Wang C, Zhang Y et al (2013a) Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 32:2952–2962. https://doi.org/10.1038/onc.2012.313

    Article  CAS  PubMed  Google Scholar 

  135. Hauck CR, Thibodeau BJ, Ahmed S et al (2017) Targeted DNA sequencing of non–small cell lung cancer identifies mutations associated with brain metastases. Int J Radiat Oncol 99:S199–S200. https://doi.org/10.1016/j.ijrobp.2017.06.495

    Article  Google Scholar 

  136. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  137. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    Article  CAS  PubMed  Google Scholar 

  138. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272. https://doi.org/10.1016/S0968-0004(97)01061-X

    Article  CAS  PubMed  Google Scholar 

  139. Gray JW (2016) PI3 kinase pathway mutations in human cancers. JAMA Oncol 2:1543–1544. https://doi.org/10.1001/jamaoncol.2016.0875

    Article  PubMed  Google Scholar 

  140. Steelman LS, Stadelman KM, Chappell WH et al (2008) Akt as a therapeutic target in cancer. Expert Opin Ther Targets 12:1139–1165. https://doi.org/10.1517/14728222.12.9.1139

    Article  CAS  PubMed  Google Scholar 

  141. Tian X, Zhou D, Chen L et al (2018) Polo-like kinase 4 mediates epithelial–mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 9:54. https://doi.org/10.1038/s41419-017-0088-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. David O, Jett J, LeBeau H et al (2004) Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res 10:6865–6871. https://doi.org/10.1158/1078-0432.CCR-04-0174

    Article  CAS  PubMed  Google Scholar 

  143. Jin Y, Yuan Y, Yi M et al (2019) Phosphorylated-Akt overexpression is associated with a higher risk of brain metastasis in patients with non-small cell lung cancer. Biochem Biophys Rep 18:100625. https://doi.org/10.1016/j.bbrep.2019.100625

    Article  PubMed  PubMed Central  Google Scholar 

  144. Li Q, Yang J, Yu Q et al (2013b) Associations between single-nucleotide polymorphisms in the PI3K-PTEN-AKT-mTOR pathway and increased risk of brain metastasis in patients with non-small cell lung cancer. Clin Cancer Res 19:6252–6260. https://doi.org/10.1158/1078-0432.CCR-13-1093

    Article  CAS  PubMed  Google Scholar 

  145. da Silva GT, Bergmann A, Thuler LCS (2019) Incidence and risk factors for bone metastasis in Non-Small Cell Lung Cancer. Asian Pacific J Cancer Prev 20:45–51. https://doi.org/10.31557/APJCP.2019.20.1.45

    Article  Google Scholar 

  146. Kuchuk M, Kuchuk I, Sabri E et al (2015) The incidence and clinical impact of bone metastases in non-small cell lung cancer. Lung Cancer 89:197–202. https://doi.org/10.1016/j.lungcan.2015.04.007

    Article  PubMed  Google Scholar 

  147. Decroisette C, Monnet I, Berard H et al (2011) Epidemiology and treatment costs of bone metastases from lung cancer: a French prospective, observational, multicenter study (GFPC 0601). J Thorac Oncol 6:576–582. https://doi.org/10.1097/JTO.0b013e318206a1e3

    Article  PubMed  Google Scholar 

  148. Kakhki VRD, Anvari K, Sadeghi R et al (2013) Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev 16:66–69. https://doi.org/10.5603/NMR.2013.0037

    Article  Google Scholar 

  149. Andrade K, Fornetti J, Zhao L et al (2017) RON kinase: a target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med 9:eaai9338. https://doi.org/10.1126/scitranslmed.aai9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fazzalari NL (2008) Bone remodeling: a review of the bone microenvironment perspective for fragility fracture (osteoporosis) of the hip. Semin Cell Dev Biol 19:467–472. https://doi.org/10.1016/j.semcdb.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  151. Bellido T (2014) Osteocyte-driven bone remodeling. Calcif Tissue Int 94:25–34. https://doi.org/10.1007/s00223-013-9774-y

    Article  CAS  PubMed  Google Scholar 

  152. Roodman GD (2004) Mechanisms of Bone Metastasis. N Engl J Med 350:1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  153. Virk MS, Lieberman JR (2007) Tumor metastasis to bone. Arthritis Res Ther 9:1–10. https://doi.org/10.1186/ar2169

    Article  CAS  Google Scholar 

  154. Stern PH, Tatrai A, Semler DE et al (1995) Endothelin receptors, second messengers, and actions in bone. J Nutr 125:2028S–2032S. https://doi.org/10.1093/jn/125.suppl_7.2028S

    Article  CAS  PubMed  Google Scholar 

  155. Hall CL, Kang S, MacDougald OA, Keller ET (2006) Role of WNTS in prostate cancer bone metastases. J Cell Biochem 97:661–672. https://doi.org/10.1002/jcb.20735

    Article  CAS  PubMed  Google Scholar 

  156. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055. https://doi.org/10.1210/endo.142.12.8536

    Article  CAS  PubMed  Google Scholar 

  157. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549. https://doi.org/10.1016/S1535-6108(03)00132-6

    Article  CAS  PubMed  Google Scholar 

  158. Shariat SF, Andrews B, Kattan MW et al (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015. https://doi.org/10.1016/S0090-4295(01)01405-4

    Article  CAS  PubMed  Google Scholar 

  159. Bobinac D, Marić I, Zoričić S et al (2005) Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J 46:389–396

    PubMed  Google Scholar 

  160. Sottnik JL, Dai J, Zhang H et al (2015) Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res 75:2151–2158. https://doi.org/10.1158/0008-5472.CAN-14-2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Krzeszinski JY, Wan Y (2015) New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci 36:360–373. https://doi.org/10.1016/j.tips.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Luo Q, Xu Z, Wang L et al (2016) Progress in the research on the mechanism of bone metastasis in lung cancer. Mol Clin Oncol 5:227–235. https://doi.org/10.3892/mco.2016.917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. D’Antonio C, Passaro A, Gori B et al (2014) Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther Adv Med Oncol 6:101–114. https://doi.org/10.1177/1758834014521110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S (2020) RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int 2020:1–11. https://doi.org/10.1155/2020/6910312

    Article  CAS  Google Scholar 

  165. Miki T, Yano S, Hanibuchi M et al (2004) Parathyroid hormone-related protein (PTHRP) is responsible for production of bone metastasis, but not visceral metastasis, by human small cell lung cancer SBC-5 cells in natural killer cell-depleted scid mice. Int J Cancer 108:511–515. https://doi.org/10.1002/ijc.11586

    Article  CAS  PubMed  Google Scholar 

  166. Roato I (2014) Bone metastases: when and how lung cancer interacts with bone. World J Clin Oncol 5:149–155

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ell B, Mercatali L, Ibrahim T et al (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556. https://doi.org/10.1016/j.ccr.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  168. Karapanagiotou EM, Terpos E, Dilana KD et al (2010) Serum bone turnover markers may be involved in the metastatic potential of lung cancer patients. Med Oncol 27:332–338. https://doi.org/10.1007/s12032-009-9214-z

    Article  CAS  PubMed  Google Scholar 

  169. Peng X, Guo W, Ren T et al (2013) Differential expression of the RANKL/RANK/OPG system is associated with bone metastasis in human non-small cell lung cancer. PLoS One 8:e58361. https://doi.org/10.1371/journal.pone.0058361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhu X, Luo H, Xu Y (2019) Transcriptome analysis reveals an important candidate gene involved in both nodal metastasis and prognosis in lung adenocarcinoma. Cell Biosci 9:82. https://doi.org/10.1186/s13578-019-0356-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Yuen Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aminuddin, A., Masre, S.F., Teow, SY., Ng, P.Y. (2021). Exploring the ‘Dormancy Activation Switch’ in the Tumour Microenvironment for Metastatic Lung Cancer: The Possible Role of MicroRNA. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_8

Download citation

Publish with us

Policies and ethics