Skip to main content

Underpinning the Rudimentary/Underlying Mechanisms Involved in the Pathogenesis of SARS-CoV-2 (COVID-19) in Human Lung Cells

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

The COVID-19 pandemic is presently the major threat to human society and health due to its high infectivity and mortality rates. To date, this pandemic has resulted in more than 1.5 million deaths globally, affecting more than 200 countries. Phylogenetic analysis of the SARS-CoV-2 genome revealed its striking homology with the bat-derived coronavirus strains, thus confirming the zoonotic origin of the virus. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) receptors expressed on the surface of the host cells, leading to endocytosis of the receptor, followed by the replication of the viral RNA, packaging, assembly, and release of the progeny viruses. This leads to the systemic infection in the host body and the shredding of the virus, causing its transmission to a new host. The extent of infection in the host cells depends on the expression of ACE2 expression and hyperactivation of the immune system to generate a cocktail of inflammatory cytokines, also referred to as the cytokine storm. This inflammatory response can cause severe damage to the lung tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorbalenya AE et al (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544. https://doi.org/10.1038/s41564-020-0695-z

    Article  CAS  Google Scholar 

  2. Chan JF-W et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet (London, England) 395(10223):514–523

    Article  CAS  Google Scholar 

  3. Lu H, Stratton CW, Tang Y-W (2020) Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 92(4):401–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burki TK (2020) Coronavirus in China. Lancet Respir Med 8(3):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. WHO (2020) WHO Director-General’s opening remarks at the media briefing on COVID-19, 11 Mar 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19%2D%2D-11-march-2020

  6. Burrell CJ, Howard CR, Murphy FA (2016) Fenner and White’s medical virology, 5th edn. Academic Press, Amsterdam

    Google Scholar 

  7. Woo PCY et al (2012) Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86(7):3995–4008. Available from: http://europepmc.org/abstract/MED/22278237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu F et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou P et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu A et al (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27(3):325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanner JA et al (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278(41):39578–39582. Available from: http://europepmc.org/abstract/MED/12917423

    Article  CAS  PubMed  Google Scholar 

  12. Krichel B et al (2020) Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem J 477(5):1009–1019

    Article  CAS  PubMed  Google Scholar 

  13. Van Boheemen S et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6):e00473-12

    PubMed  PubMed Central  Google Scholar 

  14. Wang Q et al (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181(4):894–904.e9. Available from: http://www.sciencedirect.com/science/article/pii/S009286742030338X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nieto-Torres JL et al (2011) Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 415(2):69–82

    Article  CAS  PubMed  Google Scholar 

  16. Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10(1):2342. https://doi.org/10.1038/s41467-019-10280-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. China Center for Disease Control and Prevention (2020) China CDC detects a large number of new coronaviruses at Huanan Seafood Market in Wuhan. Available from: http://www.chinacdc.cn/yw_9324/202001/t20200127_211469.html. Accessed 20 Feb 2020

  18. Rothe C et al (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 382:970–971

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bai Y et al (2020) Presumed asymptomatic carrier transmission of COVID-19. JAMA 323(14):1406–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oran DP, Topol EJ (2020) Prevalence of asymptomatic SARS-CoV-2 infection. Ann Internal Med 173(5):362–367. https://doi.org/10.7326/M20-3012

    Article  Google Scholar 

  21. Li Q et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382(13):1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Netea MG et al (2020) Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell 181(5):969–977. Available from: http://www.sciencedirect.com/science/article/pii/S0092867420305079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biswas N, Majumder P (2020) Analysis of RNA sequences of 3636 SARS-CoV-2 collected from 55 countries reveals selective sweep of one virus type. Indian J Med Res 151(5):450–458. Available from: http://www.ijmr.org.in/preprintarticle.asp?id=284484;type=0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharyya C et al (2020) Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. BioRxiv. Available from: http://biorxiv.org/content/early/2020/05/05/2020.05.04.075911.abstract

  25. Hu J et al (2020) The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. BioRxiv. Available from: https://www.biorxiv.org/content/early/2020/06/20/2020.06.20.161323

  26. Korber B et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–827.e19. Available from: https://pubmed.ncbi.nlm.nih.gov/32697968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shang J et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci 117(21):11727–11734. Available from: https://www.pnas.org/content/117/21/11727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffmann M et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8. Available from: http://www.sciencedirect.com/science/article/pii/S0092867420302294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang T et al (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178:104792

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee AK et al (2020) SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. Available from: http://www.sciencedirect.com/science/article/pii/S0092867420313106

  31. Jia HP et al (2009) Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 297(1):L84–L96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y et al (2020) SARS-CoV-2: characteristics and current advances in research. Virol J 17(1):117. https://doi.org/10.1186/s12985-020-01369-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu D, Yang XO (2020) TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect (Wei Mian Yu Gan Ran Za Zhi) 53(3):368–370

    Article  CAS  Google Scholar 

  34. Cao Y et al (2020) Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6(1):11. https://doi.org/10.1038/s41421-020-0147-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Renieri A et al (2020) ACE2 variants underlie interindividual variability and susceptibility to COVID-19 in Italian population. MedRxiv. Available from: https://www.medrxiv.org/content/early/2020/04/06/2020.04.03.20047977

  36. Stawiski EW et al (2020) Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. BioRxiv. Available from: https://www.biorxiv.org/content/early/2020/04/10/2020.04.07.024752

  37. Hussain M et al (2020) Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol 92(9):1580–1586. https://doi.org/10.1002/jmv.25832

    Article  CAS  PubMed  Google Scholar 

  38. Russo R et al (2020) Genetic analysis of the coronavirus SARS-CoV-2 host protease TMPRSS2 in different populations. Front Genet 11:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozono S et al (2020) Naturally mutated spike proteins of SARS-CoV-2 variants show differential levels of cell entry. BioRxiv. Available from: https://www.biorxiv.org/content/early/2020/06/26/2020.06.15.151779

  40. Asselta R et al (2020) ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging 12(11):10087–10098. https://doi.org/10.18632/aging.103415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Torre-Fuentes L et al (2020) ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain. J Med Virol. https://doi.org/10.1002/jmv.26319

  42. The Severe Covid-19 GWAS Group (2020) Genomewide Association Study of severe Covid-19 with respiratory failure. N Engl J Med 383(16):1522–1534. https://doi.org/10.1056/NEJMoa2020283

    Article  Google Scholar 

  43. Zeberg H, Pääbo S (2020) The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. https://doi.org/10.1038/s41586-020-2818-3

  44. Bastard P et al (2020) Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science:eabd4585. Available from: http://science.sciencemag.org/content/early/2020/09/23/science.abd4585.abstract

  45. Tu Y-F et al (2020) A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 21(7):2657

    Article  CAS  PubMed Central  Google Scholar 

  46. Yin W et al (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368(6498):1499–1504. Available from: http://science.sciencemag.org/content/368/6498/1499.abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beigel JH et al (2020) Remdesivir for the treatment of Covid-19—final report. N Engl J Med. https://doi.org/10.1056/NEJMoa2007764

  48. Cai Q et al (2020) Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing, China) 6:1192–1198

    CAS  Google Scholar 

  49. Caly L et al (2020) The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 178:104787. Available from: http://www.sciencedirect.com/science/article/pii/S0166354220302011

    Article  CAS  PubMed  Google Scholar 

  50. Hung IF-N et al (2020) Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395(10238):1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zoufaly A et al (2020) Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(20)30418-5

  52. Wang X et al (2020) The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 6(1):28. https://doi.org/10.1038/s41421-020-0169-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nojomi M et al (2020) Effect of arbidol on COVID-19: a randomized controlled trial. Available from: http://europepmc.org/abstract/PPR/PPR217076

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Bhattacharyya, C., Biswas, N.K., Das, A. (2021). Underpinning the Rudimentary/Underlying Mechanisms Involved in the Pathogenesis of SARS-CoV-2 (COVID-19) in Human Lung Cells. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_25

Download citation

Publish with us

Policies and ethics