Skip to main content
Log in

Characterization of a pangolin SARS-CoV-2-related virus isolate that uses the human ACE2 receptor

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, C., Zhong, Q., and Gao, G.F. (2022). Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci 65, 280–294.

    Article  CAS  PubMed  Google Scholar 

  • Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Boni, M.F., Lemey, P., Jiang, X., Lam, T.T.Y., Perry, B.W., Castoe, T.A., Rambaut, A., and Robertson, D.L. (2020). Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 5, 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., and Gu, J. (2017). AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinform 18, 80.

    Article  Google Scholar 

  • Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Cyranoski, D. (2020). Mystery deepens over animal source of coronavirus. Nature 579, 18–19.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fischer, H., Tschachler, E., and Eckhart, L. (2020). Pangolins lack IFIH1/MDA5, a cytoplasmic RNA sensor that initiates innate immune defense upon coronavirus infection. Front Immunol 11, 939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh, G.K.M., Dunker, A.K., Foster, J.A., and Uversky, V.N. (2020). Shell disorder analysis suggests that pangolins offered a window for a silent spread of an attenuated SARS-CoV-2 precursor among humans. J Proteome Res 19, 4543–4552.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Zhang, C., Zhang, C., Cui, H., Chen, Z., Jiang, X., Wang, T., Li, Y., Liu, J., Wan, Z., et al. (2022). SARS-CoV-2-related pangolin coronavirus exhibits similar infection characteristics to SARS-CoV-2 and direct contact transmissibility in hamsters. iScience 25, 104350.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Heinrich, S., Wittmann, T.A., Prowse, T.A.A., Ross, J.V., Delean, S., Shepherd, C.R., and Cassey, P. (2016). Where did all the pangolins go? International CITES trade in pangolin species. Glob Ecol Conserv 8, 241–253.

    Google Scholar 

  • Holmes, E.C., Goldstein, S.A., Rasmussen, A.L., Robertson, D.L., Crits-Christoph, A., Wertheim, J.O., Anthony, S.J., Barclay, W.S., Boni, M.F., Doherty, P.C., et al. (2021). The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon Iii, K.H., Kato, T., Lee, R.E., Yount, B.L., Mascenik, T.M., et al. (2020). SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, R.D., Liu, M.Q., Chen, Y., Shan, C., Zhou, Y.W., Shen, X.R., Li, Q., Zhang, L., Zhu, Y., Si, H.R., et al. (2020). Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e8.

    Google Scholar 

  • Johnson, B.A., Xie, X., Bailey, A.L., Kalveram, B., Lokugamage, K.G., Muruato, A., Zou, J., Zhang, X., Juelich, T., Smith, J.K., et al. (2021). Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kratzel, A., Kelly, J.N., V’kovski, P., Portmann, J., Brüggemann, Y., Todt, D., Ebert, N., Shrestha, N., Plattet, P., Staab-Weijnitz, C.A., et al. (2021). A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets. PLoS Biol 19, e3001490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, T.T.Y., Jia, N., Zhang, Y.W., Shum, M.H.H., Jiang, J.F., Zhu, H.C., Tong, Y.G., Shi, Y.X., Ni, X.B., Liao, Y.S., et al. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li, L., Wang, X., Hua, Y., Liu, P., Zhou, J., Chen, J., An, F., Hou, F., Huang, W., and Chen, J. (2021). Epidemiological study of betacoronaviruses in captive Malayan pangolins. Front Microbiol 12, 657439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, X., Guan, C., Wang, C., Chen, X., Lin, X., Lu, L., Li, L., Wang, T., Su, N., Wu, B., et al. (2023). Cross-species binding spectrum of ACE2 to SARS-CoV-2 RBD. Sci China Life Sci 66, 639–642.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Chen, W., and Chen, J.P. (2019). Viral metagenomics revealed Sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses 11, 979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Jiang, J.Z., Wan, X.F., Hua, Y., Li, L., Zhou, J., Wang, X., Hou, F., Chen, J., Zou, J., and Chen, J. (2020). Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 16, e1008421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Li, R., Pan, W., Huang, W., Liu, B., Xie, Y., Wang, Z., Li, C., Jiang, H., Huang, J., et al. (2020). Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine 78, 153296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulay, A., Konda, B., Garcia Jr., G., Yao, C., Beil, S., Villalba, J.M., Koziol, C., Sen, C., Purkayastha, A., Kolls, J.K., et al. (2021). SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep 35, 109055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nga, N.T.T., Latinne, A., Thuy, H.B., Long, N.V., Ngoc, P.T.B., Anh, N.T.L., Thai, N. V., Phuong, T.Q., Thai, H.V., Hai, L.K., et al. (2022). Evidence of SARS-CoV-2 related coronaviruses circulating in Sunda pangolins (Mans javanica) confiscated from the illegal wildlife trade in Viet Nam. Front Public Health 10, 826116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie, J., Li, Q., Zhang, L., Cao, Y., Zhang, Y., Li, T., Wu, J., Liu, S., Zhang, M., Zhao, C., et al. (2021). Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discov 7, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, S., Wang, J., Bai, B., Wu, L., Zheng, A., Chen, Q., Du, P., Han, P., Zhang, Y., Jia, Y., et al. (2021). Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. Embo J 40, e107786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oude Munnink, B.B., Sikkema, R.S., Nieuwenhuijse, D.F., Molenaar, R.J., Munger, E., Molenkamp, R., van der Spek, A., Tolsma, P., Rietveld, A., Brouwer, M., et al. (2021). Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Peng, M.S., Li, J.B., Cai, Z.F., Liu, H., Tang, X., Ying, R., Zhang, J.N., Tao, J.J., Yin, T.T., Zhang, T., et al. (2021). The high diversity of SARS-CoV-2-related coronaviruses in pangolins alters potential ecological risks. Zool Res 42, 833–843.

    Article  Google Scholar 

  • Plowright, R.K., Parrish, C.R., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A.L., and Lloyd-Smith, J.O. (2017). Pathways to zoonotic spillover. Nat Rev Microbiol 15, 502–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan, M.A. (2016). Determination of 50% endpoint titer using a simple formula. World J Virol 5, 85–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramani, R., Laplante, J.M., Church, T.M., Farrell, G.M., Lamson, D.M., and St. George, K. (2021). CACO-2 cells: a continuous cell line with sensitive and broad-spectrum utility for respiratory virus culture. J Virol Methods 293, 114120.

    Article  CAS  PubMed  Google Scholar 

  • Shi, W., Shi, M., Que, T.C., Cui, X.M., Ye, R.Z., Xia, L.Y., Hou, X., Zheng, J.J., Jia, N., Xie, X., et al. (2022). Trafficked Malayan pangolins contain viral pathogens of humans. Nat Microbiol 7, 1259–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, S.H., Chen, Q., Gu, H.J., Yang, G., Wang, Y.X., Huang, X.Y., Liu, S.S., Zhang, N. N., Li, X.F., Xiong, R., et al. (2020). A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124–133.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahba, L., Jain, N., Fire, A.Z., Shoura, M.J., Artiles, K.L., McCoy, M.J., and Jeong, D.E. (2020). An extensive meta-metagenomic search identifies SARS-CoV-2-homologous sequences in pangolin lung viromes. Msphere 5, e00160–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G.L., Wang, Z.Y., Duan, L.J., Meng, Q.C., Jiang, M.D., Cao, J., Yao, L., Zhu, K.L., Cao, W.C., and Ma, M.J. (2021a). Susceptibility of circulating SARS-CoV-2 variants to neutralization. N Engl J Med 384, 2354–2356.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhao, Y., Yan, F., Wang, T., Sun, W., Feng, N., Wang, W., Wang, H., He, H., Yang, S., et al. (2021b). Viral and host transcriptomes in SARS-CoV-2-infected human lung cells. J Virol 95, e0060021.

    Article  PubMed  Google Scholar 

  • Wrobel, A.G., Benton, D.J., Xu, P., Calder, L.J., Borg, A., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J., and Gamblin, S.J. (2021). Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2. Nat Commun 12, 837.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J.J., Li, N., Guo, Y., Li, X., Shen, X., et al. (2020). Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yen, H.L., Sit, T.H.C., Brackman, C.J., Chuk, S.S.Y., Gu, H., Tam, K.W.S., Law, P.Y.T., Leung, G.M., Peiris, M., Poon, L.L.M., et al. (2022). Transmission of SARS-CoV-2 δ variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case study. Lancet 399, 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Wu, Q., and Zhang, Z. (2020). Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30, 1346–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Qiao, S., Yu, J., Zeng, J., Shan, S., Tian, L., Lan, J., Zhang, L., and Wang, X. (2021). Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Nat Commun 12, 1607.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhou, P., and Shi, Z.L. (2021). SARS-CoV-2 spillover events. Science 371, 120–122.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81621005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Jia, Yu-Wei Gao or Wu-Chun Cao.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, LY., Wang, XF., Cui, XM. et al. Characterization of a pangolin SARS-CoV-2-related virus isolate that uses the human ACE2 receptor. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2484-x

Navigation