Skip to main content

Underpinning the Cellular and Molecular Mechanisms with Nanotheranostics for Lung Cancer

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Out of all the cancers, lung cancer is the most devastating causing mortality worldwide out of which ~90% of deaths are from non-small-cell lung cancer (NSCLC). Early diagnosis and ineffective traditional therapies lead to poor prognosis and percent survival in patients suffering from lung cancer. Redox signalling enacts a crucial role in controlling numerous disease biology and cellular signalling pathways. Lately, nanomedicine (application of nanotechnology in biology and medicine) has been revealed to normalize the growth of cancer. With the dawn of robust proteomics and sequencing techniques, immunohistochemistry and identification of novel conclusive biomarkers coupled with improved understanding of the molecular mechanisms regarding cancer are quintessential for targeting redox biology. Herein, a detailed overview of the recent advances in therapeutics includes nano-strategies over conventional therapeutics for targeting redox biology thereby affecting the various cell death mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9:448–451. https://doi.org/10.21037/jtd.2017.02.75

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arruebo M, Vilaboa N, Sáez-Gutierrez B et al (2011) Assessment of the evolution of Cancer treatment therapies. Cancers 3:3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sukumar UK, Bhushan B, Dubey P et al (2013) Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 3:45. https://doi.org/10.1186/2228-5326-3-45

    Article  CAS  Google Scholar 

  4. Wondrak GT (2009) Redox-directed Cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069. https://doi.org/10.1089/ars.2009.2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyskens FL, Farmer PJ, Yang S, Anton-Culver H (2007) New perspectives on melanoma pathogenesis and chemoprevention. Cancer Prev 174:191–195

    Article  CAS  Google Scholar 

  6. Cabello CM, Bair WB, Wondrak GT (2007) Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs 12:1022–1037

    Google Scholar 

  7. Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794. https://doi.org/10.1158/1078-0432.CCR-06-2082

    Article  CAS  PubMed  Google Scholar 

  8. Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. IJMS 20:2407. https://doi.org/10.3390/ijms20102407

    Article  CAS  PubMed Central  Google Scholar 

  9. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  Google Scholar 

  10. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. https://doi.org/10.1083/jcb.201102095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13. https://doi.org/10.1016/j.ceb.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  13. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  14. Lee G, Won H-S, Lee Y-M et al (2016) Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci Rep 6:18928. https://doi.org/10.1038/srep18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. In: Methods in enzymology. Elsevier, pp 3–25

    Google Scholar 

  16. Sobotta MC, Liou W, Stöcker S et al (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 11:64–70. https://doi.org/10.1038/nchembio.1695

    Article  CAS  PubMed  Google Scholar 

  17. Peralta D, Bronowska AK, Morgan B et al (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11:156–163. https://doi.org/10.1038/nchembio.1720

    Article  CAS  PubMed  Google Scholar 

  18. Woo HA, Yim SH, Shin DH et al (2010) Inactivation of Peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140:517–528. https://doi.org/10.1016/j.cell.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Patterson HC, Gerbeth C, Thiru P et al (2015) A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. PNAS 112:5679–5688

    Article  Google Scholar 

  20. Shao D, Oka S, Liu T et al (2014) A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19:232–245. https://doi.org/10.1016/j.cmet.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Q, Claret FX (2012) Phosphatases: the new brakes for Cancer development? Enzyme Res 2012:1–11. https://doi.org/10.1155/2012/659649

    Article  CAS  Google Scholar 

  22. Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in Cancer. Annu Rev Cancer Biol 1:79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808

    Article  Google Scholar 

  23. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. https://doi.org/10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  24. Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. BioEssays 31:492–495. https://doi.org/10.1002/bies.200900005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Son Y, Cheong Y-K, Kim N-H et al (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011:1–6. https://doi.org/10.1155/2011/792639

    Article  CAS  Google Scholar 

  26. Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci 107:8788–8793. https://doi.org/10.1073/pnas.1003428107

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115. https://doi.org/10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  28. Ye J, Fan J, Venneti S et al (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406–1417. https://doi.org/10.1158/2159-8290.CD-14-0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeon S-M, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665. https://doi.org/10.1038/nature11066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moon D-O, Kim M-O, Choi YH et al (2010) Butein induces G2/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett 288:204–213. https://doi.org/10.1016/j.canlet.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  31. Papaconstantinou J (2019) The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cell 8:1383. https://doi.org/10.3390/cells8111383

    Article  CAS  Google Scholar 

  32. Tobiume K, Matsuzawa A, Takahashi T et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228. https://doi.org/10.1093/embo-reports/kve046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Wang X, Vikash V et al (2016) ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev 2016:1–18. https://doi.org/10.1155/2016/4350965

    Article  CAS  Google Scholar 

  34. Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochem Sci 32:364–371. https://doi.org/10.1016/j.tibs.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  35. Thornton TM, Rincon M (2009) Non-classical P38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 5:44–52. https://doi.org/10.7150/ijbs.5.44

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Zhu Y, Yan H et al (2010) Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. BMC Cancer 10:269. https://doi.org/10.1186/1471-2407-10-269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adhikary A, Mohanty S, Lahiry L et al (2010) Theaflavins retard human breast cancer cell migration by inhibiting NF-κB via p53-ROS cross-talk. FEBS Lett 584:7–14. https://doi.org/10.1016/j.febslet.2009.10.081

    Article  CAS  Google Scholar 

  38. Chiang AC (2008) Molecular basis of metastasis. N Engl J Med 359:28142823

    Article  CAS  Google Scholar 

  39. Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203. https://doi.org/10.1038/s12276-020-0384-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikwegbue P, Masamba P, Oyinloye B, Kappo A (2017) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:2. https://doi.org/10.3390/ph11010002

    Article  CAS  PubMed Central  Google Scholar 

  41. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  42. Zong W-X (2006) Necrotic death as a cell fate. Genes Dev 20:1–15. https://doi.org/10.1101/gad.1376506

    Article  CAS  PubMed  Google Scholar 

  43. Chen Q, Kang J, Fu C (2018) The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 3:18. https://doi.org/10.1038/s41392-018-0018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiang J, Wan C, Guo R, Guo D (2016) Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed Res Int 2016:1–6. https://doi.org/10.1155/2016/7343965

    Article  CAS  Google Scholar 

  45. Lee SY, Ju MK, Jeon HM et al (2018) Regulation of tumor progression by programmed necrosis. Oxidative Med Cell Longev 2018:1–28. https://doi.org/10.1155/2018/3537471

    Article  CAS  Google Scholar 

  46. Zong W-X (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282. https://doi.org/10.1101/gad.1199904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ricci MS, Zong W (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357. https://doi.org/10.1634/theoncologist.11-4-342

    Article  CAS  PubMed  Google Scholar 

  48. Miyoshi N, Watanabe E, Osawa T et al (2008) ATP depletion alters the mode of cell death induced by benzyl isothiocyanate. Biochim Biophys Acta (BBA) - Mol Basis Dis 1782:566–573. https://doi.org/10.1016/j.bbadis.2008.07.002

    Article  CAS  Google Scholar 

  49. White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46. https://doi.org/10.1172/JCI73941

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2:e975093. https://doi.org/10.4161/23723556.2014.975093

    Article  CAS  Google Scholar 

  51. Qiu X, Zhang Y, Han J (2018) RIP3 is an upregulator of aerobic metabolism and the enhanced respiration by necrosomal RIP3 feeds back on necrosome to promote necroptosis. Cell Death Differ. https://doi.org/10.1038/s41418-018-0075-x

  52. Hanson B (2016) Necroptosis: a new way of dying? Cancer Biol Ther 17:899–910. https://doi.org/10.1080/15384047.2016.1210732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang T, Liu L, Chen X et al (2018) MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 9:220. https://doi.org/10.1038/s41419-018-0295-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu S-K, Chang W-T, Lin I-L et al (2020) The role of necroptosis in ROS-mediated Cancer therapies and its promising applications. Cancers 12:2185. https://doi.org/10.3390/cancers12082185

    Article  CAS  PubMed Central  Google Scholar 

  55. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38. https://doi.org/10.1016/j.tibs.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  56. Ferro F, Servais S, Besson P et al (2020) Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol 98:129–138. https://doi.org/10.1016/j.semcdb.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  57. Ghavami S, Asoodeh A, Klonisch T et al (2008) Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 12:1005–1022. https://doi.org/10.1111/j.1582-4934.2008.00129.x

    Article  CAS  PubMed  Google Scholar 

  58. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192. https://doi.org/10.1016/j.redox.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  59. Boyer-Guittaut M, Poillet L, Liang Q et al (2014) The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 10:986–1003. https://doi.org/10.4161/auto.28390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin Y, Jiang M, Chen W et al (2019) Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 118:109249. https://doi.org/10.1016/j.biopha.2019.109249

    Article  CAS  PubMed  Google Scholar 

  61. Rahman SMT, Zhou W, Deiters A, Haugh JM (2020) Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. J Biol Chem 295:8494–8504. https://doi.org/10.1074/jbc.RA119.012079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pradhan R, Singhvi G, Dubey SK et al (2019) MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. Future Med Chem 11:793–795. https://doi.org/10.4155/fmc-2018-0468

    Article  CAS  PubMed  Google Scholar 

  63. Shen T, Guo Q (2020) EGFR signaling pathway occupies an important position in cancer-related downstream signaling pathways of Pyk2. Cell Biol Int 44:2–13. https://doi.org/10.1002/cbin.11209

    Article  CAS  Google Scholar 

  64. Mu Y, Yang K, Hao X et al (2020) Clinical characteristics and treatment outcomes of 65 patients with BRAF-mutated non-small cell lung Cancer. Front Oncol 10:603. https://doi.org/10.3389/fonc.2020.00603

    Article  PubMed  PubMed Central  Google Scholar 

  65. Farhan M, Wang H, Gaur U et al (2017) FOXO signaling pathways as therapeutic targets in Cancer. Int J Biol Sci 13:815–827. https://doi.org/10.7150/ijbs.20052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hornsveld M, Dansen TB, Derksen PW, Burgering BMT (2018) Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol 50:90–100. https://doi.org/10.1016/j.semcancer.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  67. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ et al (2015) PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 16:1843–1862. https://doi.org/10.2217/pgs.15.122

    Article  CAS  PubMed  Google Scholar 

  68. Jiramongkol Y, Lam EW-F (2020) FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev 39:681–709. https://doi.org/10.1007/s10555-020-09883-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tong Y-H, Zhang B, Fan Y, Lin N-M (2015) Keap1–Nrf2 pathway: a promising target towards lung cancer prevention and therapeutics. Chron Dis Transl Med 1:175–186. https://doi.org/10.1016/j.cdtm.2015.09.002

    Article  Google Scholar 

  70. Barrera-Rodríguez R (2018) Importance of the Keap1-Nrf2 pathway in NSCLC: is it a possible biomarker? (Review). Biom Rep. https://doi.org/10.3892/br.2018.1143

  71. Saigusa D, Motoike IN, Saito S et al (2020) Impacts of NRF2 activation in non–small-cell lung cancer cell lines on extracellular metabolites. Cancer Sci 111:667–678. https://doi.org/10.1111/cas.14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mukherjee A, Paul M, Mukherjee S (2019) Recent Progress in the Theranostics application of nanomedicine in lung Cancer. Cancers 11:597. https://doi.org/10.3390/cancers11050597

    Article  CAS  PubMed Central  Google Scholar 

  73. Lin C, Zhang X, Chen H et al (2018) Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 25:256–266. https://doi.org/10.1080/10717544.2018.1425777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Erten A, Wrasidlo W, Scadeng M et al (2010) Magnetic resonance and fluorescence imaging of doxorubicin-loaded nanoparticles using a novel in vivo model. Nanomedicine 6:797–807. https://doi.org/10.1016/j.nano.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  75. Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed 12:21–34. https://doi.org/10.1163/156856201744425

    Article  CAS  PubMed  Google Scholar 

  76. Sengupta S et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572. https://doi.org/10.1038/nature03794568

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen J, Steele TWJ, Merkel O et al (2008) Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release 132:243–251. https://doi.org/10.1016/j.jconrel.2008.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okamoto H, Nishida S, Todo H et al (2003) Pulmonary gene delivery by chitosan–pDNA complex powder prepared by a supercritical carbon dioxide process. J Pharm Sci 92:371–380. https://doi.org/10.1002/jps.10285

    Article  CAS  PubMed  Google Scholar 

  79. Ventura CA, Cannavà C, Stancanelli R et al (2011) Gemcitabine-loaded chitosan microspheres. Characterization and biological in vitro evaluation. Biomed Microdevices 13:799–807. https://doi.org/10.1007/s10544-011-9550-6

    Article  CAS  PubMed  Google Scholar 

  80. Liu X, Wei W, Wang C et al (2011) Apoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity. J Mater Chem 21:7105. https://doi.org/10.1039/c1jm10575b

    Article  CAS  Google Scholar 

  81. Liu X, Wei W, Yuan Q et al (2012) Apoferritin–CeO 2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun 48:3155–3157. https://doi.org/10.1039/C1CC15815E

    Article  CAS  Google Scholar 

  82. Li K, Zhang Z-P, Luo M et al (2012) Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4:188–193. https://doi.org/10.1039/C1NR11132A

    Article  CAS  PubMed  Google Scholar 

  83. Mao C, Liu A, Cao B (2009) Virus-based chemical and biological sensing. Angew Chem Int Ed 48:6790–6810. https://doi.org/10.1002/anie.200900231

    Article  CAS  Google Scholar 

  84. Al-Qadi S, Grenha A, Carrión-Recio D et al (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390. https://doi.org/10.1016/j.jconrel.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  85. Islam N, Ferro V (2016) Recent advances in chitosan-based nanoparticulate pulmonary drug delivery. Nanoscale 8:14341–14358. https://doi.org/10.1039/C6NR03256G

    Article  CAS  PubMed  Google Scholar 

  86. Yang R, Yang S-G, Shim W-S et al (2009) Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 98:970–984. https://doi.org/10.1002/jps.21487

    Article  CAS  PubMed  Google Scholar 

  87. Zhu L, Li M, Liu X, Jin Y (2017) Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega 2:2273–2279. https://doi.org/10.1021/acsomega.7b00456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bivas-Benita M, Romeijn S, Junginger HE, Borchard G (2004) PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm 58:1–6. https://doi.org/10.1016/j.ejpb.2004.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Emami J, Pourmashhadi A, Sadeghi H et al (2015) Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol 20:791–800. https://doi.org/10.3109/10837450.2014.920360

    Article  CAS  PubMed  Google Scholar 

  90. Kimura S, Egashira K, Chen L et al (2009) Nanoparticle-mediated delivery of nuclear factor κB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 53:877–883. https://doi.org/10.1161/HYPERTENSIONAHA.108.121418

    Article  CAS  PubMed  Google Scholar 

  91. Ziady A-G, Gedeon CR, Miller T et al (2003) Transfection of airway epithelium by stable PEGylated poly-l-lysine DNA nanoparticles in vivo. Mol Ther 8:936–947. https://doi.org/10.1016/j.ymthe.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  92. Kaul G, Amiji M (2005) Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 22:951–961. https://doi.org/10.1007/s11095-005-4590-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47:5362–5365. https://doi.org/10.1002/anie.200800857

    Article  CAS  Google Scholar 

  94. Yu H, Wang Y, Wang S et al (2018) Paclitaxel-loaded core–shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth. ACS Appl Mater Interfaces 10:43462–43471. https://doi.org/10.1021/acsami.8b16487

    Article  CAS  PubMed  Google Scholar 

  95. Minati L, Antonini V, Dalla Serra M, Speranza G (2012) Multifunctional branched gold–carbon nanotube hybrid for cell imaging and drug delivery. Langmuir 28:15900–15906. https://doi.org/10.1021/la303298u

    Article  CAS  PubMed  Google Scholar 

  96. Podesta JE, Al-Jamal KT, Herrero MA et al (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small NA-NA. https://doi.org/10.1002/smll.200801572

  97. Beljanski V, Hiscott J (2012) The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol 2:629–635. https://doi.org/10.1016/j.coviro.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  98. Ciccarese F, Raimondi V, Sharova E et al (2020) Nanoparticles as tools to target redox homeostasis in cancer cells. Antioxidants 9:211. https://doi.org/10.3390/antiox9030211

    Article  CAS  PubMed Central  Google Scholar 

  99. Marengo B, Nitti M, Furfaro AL et al (2016) Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Med Cell Longev 2016:1–16. https://doi.org/10.1155/2016/6235641

    Article  CAS  Google Scholar 

  100. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:1–15. https://doi.org/10.1155/2013/942916

    Article  CAS  Google Scholar 

  101. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90–e90. https://doi.org/10.1038/am.2013.88

    Article  CAS  Google Scholar 

  102. Alili L, Sack M, von Montfort C et al (2013) Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19:765–778. https://doi.org/10.1089/ars.2012.4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baldrighi M, Trusel M, Tonini R, Giordani S (2016) Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front Neurosci 10. https://doi.org/10.3389/fnins.2016.00250

  104. Tang Q, Yu B, Gao L et al (2018) Stimuli responsive nanoparticles for controlled anti-cancer drug release. Curr Med Chem 25:1837–1866

    Article  CAS  Google Scholar 

  105. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171. https://doi.org/10.1016/j.biomaterials.2013.03.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kallu J, Banerjee T, Sulthana S et al (2019) Nanomedicine-assisted combination therapy of NSCLC: new platinum-based anticancer drug synergizes the therapeutic efficacy of Ganetespib. Nano 3:120–134. https://doi.org/10.7150/ntno.28468

    Article  Google Scholar 

  107. Basu S, Harfouche R, Soni S et al (2009) Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci 106:7957–7961. https://doi.org/10.1073/pnas.0902857106

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu Y-F, Wu H-C, Kuan C-H et al (2016) Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 6:21170. https://doi.org/10.1038/srep21170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Min L, He L, Chen Q et al (2012) Magnetic iron oxide nanoparticles carrying PTEN gene to reverse cisplatin-resistance of A549/CDDP cell lines. J Cent S Univ Technol 19:331–339. https://doi.org/10.1007/s11771-012-1009-2

    Article  CAS  Google Scholar 

  110. Wu H, Zhao Y, Mu X et al (2015) A silica–polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. J Biomater Sci Polym Ed 26:384–400. https://doi.org/10.1080/09205063.2015.1012035

    Article  CAS  PubMed  Google Scholar 

  111. Varkouhi AK et al (2010) Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan. Bioconjug Chem 21:2339–2346. https://doi.org/10.1021/bc1003789

    Article  CAS  PubMed  Google Scholar 

  112. Garbuzenko OB, Kuzmov A, Taratula O et al (2019) Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics 9:8362–8376. https://doi.org/10.7150/thno.39816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bolte C, Ustiyan V, Ren X et al (2020) Nanoparticle delivery of proangiogenic transcription factors into the neonatal circulation inhibits alveolar simplification caused by Hyperoxia. Am J Respir Crit Care Med 202:100–111. https://doi.org/10.1164/rccm.201906-1232OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang Y, Zhang L, Lin X et al (2019) Dual-responsive nanosystem for precise molecular subtyping and resistant reversal of EGFR targeted therapy. Chem Eng J 372:483–495. https://doi.org/10.1016/j.cej.2019.04.140

    Article  CAS  Google Scholar 

  115. Velavan B, Divya T, Sureshkumar A, Sudhandiran G (2018) Nano-chemotherapeutic efficacy of (−) -epigallocatechin 3-gallate mediating apoptosis in A549 cells: involvement of reactive oxygen species mediated Nrf2/Keap1signaling. Biochem Biophys Res Commun 503:1723–1731. https://doi.org/10.1016/j.bbrc.2018.07.105

    Article  CAS  PubMed  Google Scholar 

  116. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R (2018) Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep 8:3815. https://doi.org/10.1038/s41598-018-22172-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. He Y, Du Z, Ma S et al (2016) Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomed 11:1879–1887. https://doi.org/10.2147/IJN.S103695

    Article  CAS  Google Scholar 

  118. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231. https://doi.org/10.1016/j.taap.2005.01.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Kamra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahtab, A., Yadav, M., Niveria, K., Verma, A.K. (2021). Underpinning the Cellular and Molecular Mechanisms with Nanotheranostics for Lung Cancer. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_11

Download citation

Publish with us

Policies and ethics