Skip to main content

Solution of Partial Differential Equations on Radial Basis Functions Networks

  • Conference paper
  • First Online:
Proceedings of International Scientific Conference on Telecommunications, Computing and Control

Abstract

The solution of boundary value problems described by partial differential equations on networks of radial basis functions is considered. An analysis of gradient learning algorithms for radial basis functions networks showed that the widely used first-order method, the gradient descent method, does not provide a high learning speed and solution accuracy. The fastest method of the second order, the trust region method, is very complex. A learning algorithm based on the Levenberg–Marquardt method is proposed. The proposed algorithm, with a simpler implementation, showed comparable results in comparison with the trust region method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. Nc-Race 18 95, 6–15 (2014)

    Google Scholar 

  2. Madni, A., Madni, C., Lucero, S.: Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7 (2019)

    Article  Google Scholar 

  3. Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, USA (1993)

    Google Scholar 

  4. Mazumder, S.: Numerical methods for partial differential equations: finite difference and finite volume methods. In: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, pp. 1–461. Elsevier, Amsterdam (2015)

    Google Scholar 

  5. Tolstykh, A.I., Shirobokov, D.A.: Meshless method based on radial basis functions. Comput. Math. Math. Phys. 45(8), 1447–1454 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Vasilyev, A., Tarkhov, D., Malykhina, G.: Methods of creating digital twins based on neural network modeling. Mod. Inf. Technol. IT-Educ. 14(3), 521–532 (2018)

    Google Scholar 

  7. Griebel, M., Schweitzer, M.A.: Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering (2007)

    Google Scholar 

  8. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. Chen, W., Fu, Z.-J.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Berlin (2014)

    Google Scholar 

  10. Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, Berlin (2015)

    Google Scholar 

  11. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer International Publishing, Berlin (2018)

    Google Scholar 

  12. Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation by growing radial basis function neural networks. Neural Netw. 16(5–6), 729–734 (2003)

    Article  Google Scholar 

  13. Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Meth. Eng. 62(6), 824–852 (2005)

    Article  MathSciNet  Google Scholar 

  14. Vasiliev, A.N., Tarkhov, D.A.: Neural Network Modeling: Principles. Algorithms. Applications. St. Petersburg Polytechnic University Publishing House (2009)

    Google Scholar 

  15. Gorbachenko, V.I., Zhukov, M.V.: Solving boundary value problems of mathematical physics using radial basis function networks. Comput. Math. Math. Phys. 57(1), 145–155 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gorbachenko, V.I., Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N., Zhukov, M.V.: Neural network technique in some inverse problems of mathematical physics. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9719, pp. 310–316. Springer, Berlin (2016)

    Google Scholar 

  17. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345–368 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  19. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    Article  MathSciNet  Google Scholar 

  20. Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comput. 8(4), 819–842 (1996)

    Article  Google Scholar 

  21. Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, Hoboken (2005)

    Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  23. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Emerald Group Publishing, UK (1982)

    Google Scholar 

  24. Jia, W., Zhao, D., Shen, T., Su, C., Hu, C., Zhao, Y.: A new optimized GA-RBF neural network algorithm. Comput. Intell. Neurosci. 2014, 1–6, Article ID 982045 (2014)

    Google Scholar 

  25. Fletcher, R.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MathSciNet  Google Scholar 

  26. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Revue Française d’informatique et de Recherche Opérationnelle. Série Rouge 3(16), 35–43 (1969)

    Google Scholar 

  27. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

    Google Scholar 

  28. Zhang, L., Li, K., Wang, S.: An improved conjugate gradient algorithm for radial basis function (RBF) networks modelling. In: Proceedings of the 2012 UKACC International Conference on Control, CONTROL 2012, pp. 19–23 (2012)

    Google Scholar 

  29. Gorbachenko, V.I., Artyukhina, E.V.: Mesh-free methods and their implementation with radial basis neural networks. Neirokomp’yutory: Razrabotka, Primentnine 11, 4–10 (2010) (in Russian)

    Google Scholar 

  30. Alqezweeni, M.M., Gorbachenko, V I., Zhukov, M.V., Jaafar, M.S.: Efficient solving of boundary value problems using radial basis function networks learned by trust region method. Int. J. Math. Math. Sci. 2018, 1–4, Article ID 9457578 (2018).

    Google Scholar 

  31. Elisov, L.N., Gorbachenko, V.I., Zhukov, M.V.: Learning radial basis function networks with the trust region method for boundary problems. Autom. Remote Control 79(9), 1621–1629 (2018)

    Article  MathSciNet  Google Scholar 

  32. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. Trust Region Methods. Society for Industrial and Applied Mathematics, USA (2000)

    Google Scholar 

  33. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  34. Boyd, J.P., Gildersleeve, K.W.: Numerical experiments on the condition number of the interpolation matrices for radial basis functions. Appl. Numer. Math. 61(4), 443–459 (2011)

    Article  MathSciNet  Google Scholar 

  35. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: 30th International Conference on Machine Learning, ICML 2013, pp. 2176–2184. International Machine Learning Society (IMLS) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohie Alqezweeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alqezweeni, M., Gorbachenko, V. (2021). Solution of Partial Differential Equations on Radial Basis Functions Networks. In: Voinov, N., Schreck, T., Khan, S. (eds) Proceedings of International Scientific Conference on Telecommunications, Computing and Control. Smart Innovation, Systems and Technologies, vol 220. Springer, Singapore. https://doi.org/10.1007/978-981-33-6632-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6632-9_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6631-2

  • Online ISBN: 978-981-33-6632-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics