Skip to main content

Seaweed-Based Biodegradable Biopolymers, Composite, and Blends with Applications

  • Chapter
  • First Online:
Bioremediation using weeds

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The rising environmental awareness is promoting researchers to develop new biodegradable material. Seaweed is a versatile organism able to produce diverse type of polymers, i.e., agar, carrageenan, alginate, and polyhydroxyalkanoates. Several studies confirmed that these biopolymers are non-toxic, biodegradable, renewable, biocompatible, and eco-friendly. Seaweeds have been used as reinforcement to improve the mechanical properties of polymer composites. Several modifications have been investigated in the seaweed biopolymer to change or improve the properties of biopolymers like functionalization, blending with different polymers, and forming composite with supporting materials. The potential of seaweed as filler in polymer composites improves the thermal, physical, and mechanical properties of the synthetic polymer matrix. The chapter focuses on various seaweed biopolymers with their potential sources, modification of biopolymer, and their application in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fattah AF, Edrees M (1972) A study on the polysaccharide content of Ulva lactucal L. Qual Plant Mater Veg 22(1):15–22

    Article  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  • Agostini de Moraes M, Cocenza DS, da Cruz Vasconcellos F, Fraceto LF, Beppu MM (2013) Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J Environ Manage 131:222–227

    Article  Google Scholar 

  • Ahmad Z, Sharma S, Khuller GK (2007) Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomed Nanotechnol Biol Med 3(3):239–243

    Google Scholar 

  • Akkineni A, Ahlfeld T, Funk A, Waske A, Lode A, Gelinsky M (2016) Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers 8(5):170

    Article  Google Scholar 

  • Ale MT, Meyer AS (2013) Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv 3(22):8131–8141

    Article  Google Scholar 

  • Alves A, Duarte ARC, Mano JF, Sousa RA, Reis RL (2012a) PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. J Supercrit Fluids 65:32–38

    Article  Google Scholar 

  • Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL (2012b) Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm 426(1–2):76–81

    Article  Google Scholar 

  • Ammar HH, Lajili S, Said RB, Le Cerf D, Bouraoui A, Majdoub H (2015) Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus Cystoseira. DARU J Pharm Sci 23:Article number: 1

    Google Scholar 

  • Alves A, Sousa RA, Reis RL (2013) Processing of degradable ulvan 3D porous structures for biomedical applications. J Biomed Mater Res 101A(4):998–1006

    Article  Google Scholar 

  • Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103:143–157

    Article  Google Scholar 

  • Appelqvist IAM, Debet MRM (1997) Starch-biopolymer interactions—a review. Food Rev Int 13(2):163–224

    Article  Google Scholar 

  • Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS (2018) Treatment of wastewater using seaweed: a review. Int J Environ Res Public Health 15(12):2851

    Article  Google Scholar 

  • Atef M, Rezaei M, Behrooz R (2015) Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll. 45:150–157

    Article  Google Scholar 

  • Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2(3):278–285

    Article  Google Scholar 

  • Balakrishnan B, Lesieur S, Labarre D, Jayakrishnan A (2005) Periodate oxidation of sodium alginate in water and in ethanol-water mixture: a comparative study. Carbohydr Res 340(7):1425–1429

    Article  Google Scholar 

  • BaloÄŸlu E, ÅženyiÄŸit T (2010) A design and evaluation of layered matrix tablet formulations of metoprolol tartrate. AAPS PharmSciTech 11:563–573

    Article  Google Scholar 

  • BeMiller JN (1996) Food polysaccharides and their applications. Trends Food Sci Technol 7(6):207–208

    Article  Google Scholar 

  • Bertasa M, Botteon A, Brambilla L, Riedo C, Chiantore O, Poli T, Sansonetti A, Scalarone D (2017) Cleaning materials: a compositional multi-analytical characterization of commercial agar powders. J Anal Appl Pyrolysis 125:310–317

    Article  Google Scholar 

  • Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13(6):29R–40R

    Article  Google Scholar 

  • Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Moon YM, Song HS, Jeon JM, Choi KY, Yang YH (2019a) Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol 271:306–315

    Article  Google Scholar 

  • Bhatia SK, Wadhwa P, Bhatia RK, Patel SKS, Yang YH (2019b) Strategy for biosynthesis of polyhydroxyalkonates polymers/copolymers and their application in drug delivery. In: Kalia VC (eds) Biotechnological applications of polyhydroxyalkanoates, pp 13–34. Springer, Singapore

    Google Scholar 

  • Bilal M, Iqbal HMN (2019) Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatal Agric Biotechnol 20:101205

    Article  Google Scholar 

  • Blakemore WR, Harpell AR (2009) Carrageenan. In: Imeson A (eds.) Food stabilisers, thickeners and gelling agents, pp 73–94. Blackwell, Oxford

    Google Scholar 

  • Bonferoni MC, Rossi S, Ferrari F, Caramella C (2004) Development of oral controlled-tablet formulations based on diltiazem-carrageenan complex. Pharm Dev Technol 9(2):155–162

    Article  Google Scholar 

  • Bünger CM, Gerlach C, Freier T, Schmitz KP, Pilz M, Werner C, Jonas L, Schareck W, Hopt UT, De Vos P (2003) Biocompatibility and surface structure of chemically modified immunoisolating alginate-PLL capsules. J Biomed Mater Res 67A(4):1219–1227

    Article  Google Scholar 

  • Chabala LFG, Cuartas CEE, López MEL (2017) Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles. Mar Drugs 15(10):328

    Article  Google Scholar 

  • Chiellini F, Morelli A (2011) Ulvan: a versatile platform of biomaterials from renewable resources. In: Pignatello R (ed) Biomaterials—physics and chemistry. IntechOpen Ltd., London, pp 75–98

    Google Scholar 

  • Chuysinuan P, Pengsuk C, Lirdprapamongkol K, Techasakul S, Svasti J, Nooeaid P (2019) Enhanced structural stability and controlled drug release of hydrophilic antibiotic-loaded alginate/soy protein isolate core-sheath fibers for tissue engineering applications. Fibers Polym 20:1–10

    Article  Google Scholar 

  • Citkowska A, Szekalska M, Winnicka K (2019) Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar Drugs 17(8):458

    Article  Google Scholar 

  • Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14(3):42

    Article  Google Scholar 

  • Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, Dräger G, Zweigerdt R, Martin U, Gruh I (2013) The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34(10):2463–2471

    Article  Google Scholar 

  • Daly AC, Critchley SE, Rencsok EM, Kelly DJ (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8(4):045002

    Article  Google Scholar 

  • Dash M, Samal SK, Bartoli C, Morelli A, Smet PF, Dubruel P, Chiellini F (2014) Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 6(5):3211–3218

    Article  Google Scholar 

  • Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114(6):1203–1216

    Article  Google Scholar 

  • Domozych DS (2015) Cell wall evolution and diversity. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology, pp 55–79. Springer

    Google Scholar 

  • El-Kady AM, Ali AA, El-Fiqi A (2020) Controlled delivery of therapeutic ions and antibiotic drug of novel alginate-agarose matrix incorporating selenium-modified borosilicate glass designed for chronic wound healing. J Non Cryst Solids 534:119889

    Article  Google Scholar 

  • Enayatzamir K, Alikhani HA, Yakhchali B, Tabandeh F, Rodríguez-Couto S (2010) Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res 17:145–153

    Article  Google Scholar 

  • Faridi Esfanjani A, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surfaces B Biointerfaces 146:532–543

    Article  Google Scholar 

  • Felfel RM, Gideon-Adeniyi MJ, Zakir Hossain KM, Roberts GAF, Grant DM (2019) Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydr Polym 204:59–67

    Article  Google Scholar 

  • Ficko-Blean E, Hervé C, Michel G (2015) Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspect Phycol 2(1):51–64

    Google Scholar 

  • Geed SR, Kureel MK, Prasad S, Singh RS, Rai BN (2018) Novel study on biodegradation of malathion and investigation of mass transfer correlation using alginate beads immobilized Bacillus sp. S4 in bioreactor. J Environ Chem Eng 120:52–57

    Google Scholar 

  • Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A (2019) Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol 271:166–173

    Article  Google Scholar 

  • Greimel A, Werle M, Bernkop-Schnürch A (2007) Oral peptide delivery: in-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles. J Pharm Pharmacol 59(9):1191–1198

    Article  Google Scholar 

  • Grøndahl L, Lawrie G, Anitha A, Shejwalkar A (2019) Applications of alginate biopolymer in drug delivery. In: Sharma CP (ed) Biointegration of medical implant materials, pp 375–403. Elsevier

    Google Scholar 

  • Guiseley KB (1970) The relationship between methoxyl content and gelling temperature of agarose. Carbohydr Res 13(2):247–256

    Article  Google Scholar 

  • Hardouin K, Bedoux G, Burlot AS, Donnay-Moreno C, Bergé JP, Nyvall-Collén P, Bourgougnon N (2016) Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res 16:233–239

    Article  Google Scholar 

  • Hegge AB, Andersen T, Melvik JE, Bruzell E, Kristensen S, Tønnesen HH (2011) Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: studies on curcumin and curcuminoides XLII. J Pharm Sci 100(1):174–185

    Article  Google Scholar 

  • Hernández-Carmona G, Freile-Pelegrín Y, Hernández-Garibay E (2013) Conventional and alternative technologies for the extraction of algal polysaccharides. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals, pp 475–516. Elsevier

    Google Scholar 

  • Hickey RJ, Pelling AE (2019) Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol 7:45

    Article  Google Scholar 

  • Ho TTM, Bremmell KE, Krasowska M, Stringer DN, Thierry B, Beattie DA (2015) Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry. Soft Matter 11:2110–2124

    Article  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763

    Article  Google Scholar 

  • Hwang PA, Lin XZ, Kuo KL, Hsu FY (2017) Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials 10(3):291

    Article  Google Scholar 

  • Iglesias O, de Dios MAF, Rosales E, Pazos M, Sanromán MA (2013) Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environ Sci Pollut Res 20:2172–2183

    Article  Google Scholar 

  • Imbs TI, Ermakova SP, Malyarenko OS, Isakov VV, Zvyagintseva TN (2016) Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in-vitro investigation of their anticancer activity. Carbohydr Polym 135:162–168

    Article  Google Scholar 

  • Iwata H, Takagi T, Amemiya H (1992) Agarose microcapsule applied in islet xenografts (hamster to mouse). Transpl Proc 24(3):952

    Google Scholar 

  • Jung J, Hu JW (2017) Characterization of polyethylene oxide and sodium alginate for oil contaminated-sand remediation. Sustainability 9(1):62

    Article  Google Scholar 

  • Kalitnik AA, Byankina Barabanova AO, Nagorskaya VP, Reunov AV, Glazunov VP, Solov’eva TF, Yermak IM (2013) Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol 25:65–72

    Article  Google Scholar 

  • Khanarian NT, Haney NM, Burga RA, Lu HH (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258

    Google Scholar 

  • Kikionis S, Ioannou E, Toskas G, Roussis V (2015) Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polym Sci 132(26):42153

    Article  Google Scholar 

  • Kim C, Jeong D, Kim S, Kim Y, Jung S (2019) Cyclodextrin functionalized agarose gel with low gelling temperature for controlled drug delivery systems. Carbohydr Polym 222:115011

    Article  Google Scholar 

  • Lahaye M, Brunel M, Bonnin E (1997) Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydr Res 304(3–4):325–333

    Google Scholar 

  • Lahaye M, Jegou D, Buleon A (1994) Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohydr. Res 262(1):115–125

    Google Scholar 

  • Lahaye M, Kaeffer B (1997) Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology. Sci Aliments 17:563–584

    Google Scholar 

  • Lahaye M, Robic A (2007) Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromol 8(6):1765–1774

    Article  Google Scholar 

  • Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. Hydrobiologia 221:137–148

    Article  Google Scholar 

  • Lechat H, Amat M, Mazoyer J, Buléon A, Lahaye M (2000) Structure and distribution of glucomannan and sulfated glucan in the cell walls of the red alga Kappaphycus alvarezii (Gigartinales, Rhodophyta). J Phycol 36(5):891–902

    Article  Google Scholar 

  • Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T (2004) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 52(9):1091–1094

    Article  Google Scholar 

  • Leiro JM, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh Int Immunopharmacol 7(7):879–888

    Article  Google Scholar 

  • Leonard M, De Boisseson MR, Hubert P, Dalençon F, Dellacherie E (2004) Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 98(3):395–405

    Article  Google Scholar 

  • Leung A, Lawrie G, Nielsen L, Trau M (2008) Synthesis and characterization of alginate/poly-L-ornithine/alginate microcapsules for local immunosuppression. J Microencapsul 25(6):387–398

    Article  Google Scholar 

  • Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13(8):1671–1695

    Article  Google Scholar 

  • Li H, Tan YJ, Liu S, Li L (2018) Three-dimensional bioprinting of oppositely charged hydrogels with super strong interface bonding. ACS Appl Mater Interfaces 10(13):11164–11174

    Article  Google Scholar 

  • Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11

    Article  Google Scholar 

  • Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463(2):137–145

    Article  Google Scholar 

  • Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3(3):1–19

    Google Scholar 

  • Lu L, Zhao M, Wang Y (2007) Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization. World J Microbiol Biotechnol 23:159–166

    Article  Google Scholar 

  • Madera-Santana TJ, Robledo D, Freile-Pelegrín Y (2011) Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia cornea. Mar Biotechnol 13:793–800

    Article  Google Scholar 

  • Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14

    Article  Google Scholar 

  • Marinho-Soriano E, Bourret E (2005) Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour Technol 96(3):379–382

    Article  Google Scholar 

  • Marras-Marquez T, Peña J, Veiga-Ochoa MD (2014) Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr Polym 103:359–368

    Article  Google Scholar 

  • Martins JT, Bourbon AI, Pinheiro AC, Souza BWS, Cerqueira MA, Vicente AA (2013) Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food Bioprocess Technol 6:2081–2092

    Article  Google Scholar 

  • Matsusaki M, Sakaguchi H, Serizawa T, Akashi M (2007) Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed 18(6):775–783

    Article  Google Scholar 

  • Meena R, Prasad K, Siddhanta AK (2009) Development of a stable hydrogel network based on agar-kappa-carrageenan blend cross-linked with genipin. Food Hydrocoll 23(2):497–509

    Article  Google Scholar 

  • Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39(1–6):491–516

    Google Scholar 

  • Morelli A, Betti M, Puppi D, Chiellini F (2016) Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydr Polym 136:1108–1117

    Article  Google Scholar 

  • Murakami K, Aoki H, Nakamura S, Nakamura S, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31(1):83–90

    Article  Google Scholar 

  • Murano E (1995) Chemical structure and quality of agars from Gracilaria. J Appl Phycol 7:245

    Article  Google Scholar 

  • Nair AV, Raman M, Doble M (2016) Cyclic β-(1 → 3) (1 → 6) glucan/carrageenan hydrogels for wound healing applications. RSC Adv. 6:98545–98553

    Article  Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med (Praha) 58:187–205

    Article  Google Scholar 

  • Nerurkar J, Jun HW, Price JC, Park MO (2005) Controlled-release matrix tablets of ibuprofen using cellulose ethers and carrageenans: effect of formulation factors on dissolution rates. Eur J Pharm Biopharm 61(1–2):56–68

    Article  Google Scholar 

  • Nguyen TPT, Le NXT, Lee NY (2020) Microfluidic approach to generate a tadpole-egg-shaped alginate fiber and its application in tissue engineering. ACS Biomater Sci Eng 6(3):1663–1670

    Article  Google Scholar 

  • Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141

    Article  Google Scholar 

  • Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenerg 36:218–225

    Article  Google Scholar 

  • Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L (2003) Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 48(6):543–549

    Article  Google Scholar 

  • Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14(2):103–117

    Article  Google Scholar 

  • Phan The D, Debeaufort F, Voilley A, Luu D (2009) Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. J Food Eng 90(4):548–558

    Article  Google Scholar 

  • Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromol 12(11):3952–3961

    Article  Google Scholar 

  • Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z (2006) In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorganic Med Chem Lett 16(9):2441–2445

    Article  Google Scholar 

  • Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57(2):171–180

    Article  Google Scholar 

  • Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292

    Article  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146

    Article  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  Google Scholar 

  • Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  Google Scholar 

  • Rhim JW, Wang LF (2013) Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96(1):71–81

    Article  Google Scholar 

  • Rivadeneira J, Audisio MC, Gorustovich A (2018) Films based on soy protein-agar blends for wound dressing: effect of different biopolymer proportions on the drug release rate and the physical and antibacterial properties of the films. J Biomater Appl 32(9):1231–1238

    Google Scholar 

  • Robic A, Gaillard C, Sassi JF, Leral Y, Lahaye M (2009) Ultrastructure of Ulvan: a polysaccharide from green seaweeds. Biopolymers 91(8):652–664

    Article  Google Scholar 

  • Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42(4–5):1290–1298

    Article  Google Scholar 

  • Roohinejad S, Koubaa M, Barba FJ, Saljoughian S, Amid M, Greiner R (2017) Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res Int 99(3):1066–1083

    Article  Google Scholar 

  • Rozaini MN, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, Miskam M, Loh SH, Yahaya N (2019) Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta 199(1):522–531

    Article  Google Scholar 

  • Sachan N, Pushkar S, Jha A, Bhattcharya A (2009) Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res 2(8):1191–1199

    Google Scholar 

  • Sangeetha S, Venkatesh DN, Adhiyaman R, Santhi K, Suresh B (2007) Formulation of sodium alginate nanospheres containing amphotericin b for the treatment of systemic candidiasis. Trop J Pharm Res 6(1):653–659

    Article  Google Scholar 

  • Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromol 10(6):1392–1401

    Article  Google Scholar 

  • Sezer AD, Cevher E, Hatipoǧlu F, Oǧurtan Z, BaÅŸ AL, Akbuǧa J (2008) Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull 31(12):2326–2333

    Article  Google Scholar 

  • Sezer AD, Hatipoǧlu F, Cevher E, Oǧurtan Z, BaÅŸ AL, Akbuǧa J (2007) Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech 8:E94–E101

    Article  Google Scholar 

  • Shi J, Cheng C, Zhao H, Jing J, Gong N, Lu W (2013) In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex. Int J Biol Macromol 60:341–346

    Article  Google Scholar 

  • Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J. Polym 2014:Article ID 427259

    Google Scholar 

  • Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, Friedland B, Govender S, De Kock A, Cassim N, Palanee T, Dozier G, Maguire R, Lahteenmaki P (2008) Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet 372(9654):1977–1987

    Article  Google Scholar 

  • Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018(12):3117–3145

    Article  Google Scholar 

  • Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R, Benevides NMB (2018) In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 112:1248–1256

    Article  Google Scholar 

  • Straccia MC, D’Ayala GG, Romano I, Oliva A, Laurienzo P (2015) Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 13(5):2890–2908

    Article  Google Scholar 

  • Sun X, Liu C, Omer AM, Yang LY, Ouyang XK (2019) Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 132(1):487–494

    Article  Google Scholar 

  • Synytsya A, Choi DJ, Pohl R, Na YS, Capek P, Lattová E, Taubner T, Choi JW, Lee CW, Park JK, Kim WJ, Kim SM, Lee J, Park Y (2015) Structural features and anti-coagulant activity of the sulphated polysaccharide SPS-CF from a green alga Capsosiphon fulvescens. Mar Biotechnol 17:718–735

    Article  Google Scholar 

  • Tamizi E, Azizi M, Seyed Dorraji MS, Dusti Z, Panahi-Azar V (2018) Stabilized core/shell PVA/SA nanofibers as an efficient drug delivery system for dexpanthenol. Polym Bull 75:547–560

    Article  Google Scholar 

  • Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25(10):1937–1945

    Article  Google Scholar 

  • Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374

    Article  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  Google Scholar 

  • Trevisol TC, Fritz ARM, de Souza SMAGU, Bierhalz ACK, Valle JAB (2019) Alginate and carboxymethyl cellulose in monolayer and bilayer films as wound dressings: effect of the polymer ratio. J Appl Polym Sci 136(3):46941

    Article  Google Scholar 

  • Tyeb S, Kumar N, Kumar A, Verma V (2018) Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydr Polym 200:572–582

    Article  Google Scholar 

  • Vlieghe P, Clerc T, Pannecouque C, Witvrouw M, De Clercq E, Salles JP, Kraus JL (2002) Synthesis of new covalently bound κ-carrageenan-AZT conjugates with improved anti-HIV activities. J Med Chem 45(6):1275–1283

    Article  Google Scholar 

  • Wang J, Qian Y (1999) Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels. Chemosphere 38(13):3109–3117

    Article  Google Scholar 

  • Wang Y, Zhang P, Liu CF, Huang CZ (2013) A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification. RSC Adv 3(24):9240–9246

    Article  Google Scholar 

  • Xie J, Feng N, Wang R, Guo Z, Dong H, Cui H, Wu H, Qiu G, Liu X (2020) A reusable biosorbent using Ca-Alginate immobilized Providencia vermicola for Pd(II) recovery from acidic solution. Water Air Soil Pollut 231:Article number: 36

    Google Scholar 

  • Xu SY, Huang X, Cheong KL (2017) Recent advances in marine algae polysaccharides: isolation, structure, and activities. Mar Drugs 15:388

    Article  Google Scholar 

  • Youssouf L, Lallemand L, Giraud P, Soulé F, Bhaw-Luximon A, Meilhac O, D’Hellencourt C, Jhurry D, Couprie J (2017) Ultrasound-assisted extractionand structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr Polym 166:55–63

    Article  Google Scholar 

  • Yu W, Jiang YY, Sun TW, Qi C, Zhao H, Chen F, Shi Z, Zhu YJ, Chen D, He Y (2016) Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing. RSC Adv 6(106):104375–104387

    Article  Google Scholar 

  • Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M (2018) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66–84

    Article  Google Scholar 

  • Zepon KM, Martins MM, Marques MS, Heckler JM, Dal Pont Morisso F, Moreira MG, Ziulkoski AL, Kanis LA (2019) Smart wound dressing based on κ–carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr Polym 206:362–370

    Article  Google Scholar 

  • Zhang HJ, Mao WJ, Fang F, Li HY, Sun HH, Chen Y, Qi XH (2008) Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydr Polym 71(3):428–434

    Article  Google Scholar 

  • Zhang M, Chen S, Zhong L, Wang B, Wang H, Hong F (2020) Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. Int J Biol Macromol 143:235–242

    Article  Google Scholar 

  • Zhang N, Wang J, Ye J, Zhao P, Xiao M (2018a) Oxyalkylation modification as a promising method for preparing low-melting-point agarose. Int J Biol Macromol 117:696–703

    Article  Google Scholar 

  • Zhang Z, Wang X, Wang Y, Hao J (2018b) Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromol 19(3):980–988

    Article  Google Scholar 

Download references

Acknowledgements

SVO thanks the UGC Government of India for awarding Dr. D. S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti P. Jadhav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otari, S.V., Jadhav, J.P. (2021). Seaweed-Based Biodegradable Biopolymers, Composite, and Blends with Applications. In: Pant, D., Bhatia, S.K., Patel, A.K., Giri, A. (eds) Bioremediation using weeds. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-33-6552-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6552-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6551-3

  • Online ISBN: 978-981-33-6552-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics