Skip to main content

Research on Testing Method of Low Voltage IGBT Module Parameter

  • Conference paper
  • First Online:
Recent Featured Applications of Artificial Intelligence Methods. LSMS 2020 and ICSEE 2020 Workshops (LSMS 2020, ICSEE 2020)

Abstract

For the safe and rapid testing of multi-module power devices in complex systems, low-voltage testing is performed through a test experimental platform for insulated gate bipolar transistors, an inverter composed of IGBT modules, and the low-voltage experiment results confirm whether the power device works normally with rated conditions. A new method for rapidly detecting the IGBT modules is presented in this paper by monitoring inverter output, which uses low voltage input test. This paper proposes the overall design scheme, key function design and circuit principle analysis of this tester. This paper analyzes the test conditions for power devices during low-voltage testing, and provides a reference for low-voltage testing. The realization of this method has practical application value prospects for developing new products of power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, H., Liu, C., Rathore, A.K.: An FPGA-based IGBT behavioral model with high transient resolution for real-time simulation of power electronic circuits. IEEE Trans. Ind. Electron. 66(8), 6581–6591 (2019)

    Article  Google Scholar 

  2. Al’Akayshee, Q., Reynolds, S., Golland, A., et al.: Advance high power semiconductors devices in drives and power conversion. In: 6th IET International Conference on Power Electronics, Machines and Drives, Briston, UK, pp. 1–4 (2012)

    Google Scholar 

  3. Scharnholz, S., Schneider, R., Spahn, E., et al.: Investigation of IGBT-devices for pulsed power applications. In: 14th IEEE International Pulsed Power Conference, Dallas, TX, pp. 349–352 (2003)

    Google Scholar 

  4. Eicher, S., Rahimo, M., Tsyplakov, E., et al.: 4.5 kV press pack IGBT designed for ruggedness and reliability. In: 39th IAS Annual Meeting Industry Applications Conference, Seattle, WA, pp. 1534–1539 (2004)

    Google Scholar 

  5. Zeng, Z., Zheng, W., Zhao, R., et al.: Modeling, modulation, and control of the three-phase four-switch PWM rectifier under balanced voltage. IEEE Trans. Power Electron. 31(7), 4892–4905 (2015)

    Google Scholar 

  6. Wang, Z., Shi, X., Tolbert, L.M., et al.: A di/dt feedback based active gate driver for smart switching and fast overcurrent protection of IGBT modules. IEEE Trans. Power Electron. 29(7), 3720–3732 (2014)

    Article  Google Scholar 

  7. Luo, H., Li, W., He, X.: Online high-power P-i-N diode chip temperature extraction and prediction method with maximum recovery current di/dt. IEEE Trans. Power Electron. 30(5), 2395–2404 (2015)

    Article  Google Scholar 

  8. Bryant, A., Yang, S., Mawby, P., et al.: Investigation into IGBT dv/dt during turn-off and its temperature dependence. IEEE Trans. Power Electron. 26(10), 3019–3031 (2011)

    Article  Google Scholar 

  9. Huang, A.Q., Crow, M.L., Heydt, G.T., et al.: The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proc. IEEE 99(1), 138–144 (2011)

    Article  Google Scholar 

  10. Yang, S., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)

    Article  Google Scholar 

  11. Barlini, D., Ciappa, M., Castellazzi, A., et al.: New technique for the measurement of the static and of the transient junction temperature in IGBT devices under operating conditions. Microelectron. Reliab. 46(9), 1772–1777 (2006)

    Article  Google Scholar 

  12. Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-a review. IEEE Trans. Power Electron. 27(6), 3081–3092 (2012)

    Article  Google Scholar 

  13. Sheng, K., Williams, B.W., Finney, S.J.: A review of IGBT models. IEEE Trans. Power Electron. 15(6), 1250–1266 (2000)

    Article  Google Scholar 

  14. Lu, L., Bryant, A., Hudgins, J.L., et al.: Physics-based model of planar-gate IGBT including MOS side two-dimensional effects. IEEE Trans. Ind. Appl. 46(6), 2556–2567 (2010)

    Article  Google Scholar 

  15. Castellazzi, A., Batista, E., Ciappa, M., et al.: Full electro-thermal model of a 6. 5 kV field-stop IGBT module. In: Proceedings of the 39th IEEE Power Electronics Specialist Conference, Rhodes, Greece, pp. 392–397 (2008)

    Google Scholar 

  16. Cotorogea, M.: Physics-based spice-model for IGBTs with transparent emitter. IEEE Trans. Power Electron. 24(12), 2821–2832 (2009)

    Article  Google Scholar 

  17. Sheng, K., Williams, B.W., Finney, S.J.: A review of IGBT models. Power Electron. 15(6), 1250–1266 (2000)

    Article  Google Scholar 

  18. Marinov, A., Valchev, V.: Power loss reduction in electronic inverters through IGBT-MOSFET combination. Procedia Earth Planet. Sci. 1(1), 1539–1543 (2009)

    Article  Google Scholar 

  19. Mandeya, R., Chen, C., Pickert, V., et al.: Gate-emitter pre-threshold voltage as a health sensitive parameter for IGBT chip failure monitoring in high voltage multichip IGBT power modules. IEEE Trans. Power Electron. 34(9), 9158–9169 (2018)

    Article  Google Scholar 

  20. Rosas-Caro, J., Mancilla-David, F., Ramirez-Arredondo, J., Bakir, A.M.: Two-switch three-phase ac-link dynamic voltage restorer. Power Electron. IET 5(9), 1754–1763 (2012)

    Article  Google Scholar 

  21. Huang, J., Huang, H., Chen, X.B.: Simulation study of a low ON-state voltage superjunction IGBT with self-biased PMOS. IEEE Trans. Electron. Devices 66(7), 3242–3246 (2019)

    Article  Google Scholar 

  22. Tang, Z., Yu, X., Jin, X.: Compensation strategy and simulation of dynamic voltage restorer. Power Syst. Autom. 32(4), 63–66 (2004)

    Google Scholar 

  23. Yang, Y., Ruan, Y., Tang, Y.Y., et al.: Three-phase grid-connected inverters based on PLL and virtual grid flux. Trans. China Electrotech. Soc. 25(4), 109–114 (2010)

    Google Scholar 

  24. Busca, C.: Modeling lifetime of high power IGBTS in wind power applications anoverview. In: IEEE International Symposium on Industrial Electronics Records, pp. 1408–1413 (2011)

    Google Scholar 

  25. Bazzi, A.M., Krein, P.T., Kimball, J.W., et al.: IGBT and diode loss estimation under hysteresis switching. IEEE Trans. Power Electron. 27(3), 1044–1048 (2012)

    Article  Google Scholar 

  26. Mitsubishi Electric IGBT Modules Application Note. http://www.mitsubihsielectric.com/cn

  27. Infineon IGBT datasheet (2014). http://www.Infineon.com/cms/en/product/index.html

  28. Sheng, K., Williams, B.W., Finney, S.J.: A review of IGBT models. IEEE Trans. Power Electron. 15(6), 1250–1266 (2000)

    Article  Google Scholar 

  29. Chen, G., Han, D., Mei, Y.H.: Transient thermal performance of IGBT power modules attached by low-temperature sintered nanosilver. IEEE Trans. Device Mater. Reliab. 12(1), 124–132 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Anhui Polytechnic University of Engineering Energy Internet Innovation Research Platform Support, Anhui Province Natural Science Foundation (1908085MF215), Pre-research of National Natural Science Fund Project of Anhui Polytechnic University (Xjky02201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, P., Gao, W., Xu, J. (2020). Research on Testing Method of Low Voltage IGBT Module Parameter. In: Fei, M., Li, K., Yang, Z., Niu, Q., Li, X. (eds) Recent Featured Applications of Artificial Intelligence Methods. LSMS 2020 and ICSEE 2020 Workshops. LSMS ICSEE 2020 2020. Communications in Computer and Information Science, vol 1303. Springer, Singapore. https://doi.org/10.1007/978-981-33-6378-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6378-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6377-9

  • Online ISBN: 978-981-33-6378-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics