Skip to main content

An Efficient Routing in Wireless Sensor Network: An Application of Grey Wolf Optimization

  • Chapter
  • First Online:
Nature-Inspired Computing for Smart Application Design

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

  • 215 Accesses

Abstract

This study investigates a wireless sensor network to determine an optimal path from source node to destination node while minimizing energy consumption during data transmission. To this end, the problem is formulated as Mixed Integer Programming Problem and solved using Simple Branch and Bound Algorithm. Model variants is also developed to gain crucial insights into the problem structure by considering network dynamics and uncertainty. This allows to focus on key problem aspects such as minimization of energy consumption, improvement of transmission delays, and prevention of network failures. A modified Grey Wolf Optimization technique is developed to solve 30 large size problems with 50, 100, and 200 sensor nodes. Results obtained suggest that the Grey Wolf Optimizer is scalable, robust and efficient, when obtaining optimal solutions in a resource constraint environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, L., & Nguyen, H. Y. (2020). Mobility based network lifetime in wireless sensor networks: A review. In Computer networks (p. 107236).

    Google Scholar 

  2. Banerjee, P. S., Mandal, S. N., De, D., & Maiti, B. (2020). Rl-sleep: Temperature adaptive sleep scheduling using reinforcement learning for sustainable connectivity in wireless sensor networks. In Sustainable computing: Informatics and systems, (Vol. 26, p. 100380).

    Google Scholar 

  3. Tekin, N., & Gungor, V. C. (2020). The impact of error control schemes on lifetime of energy harvesting wireless sensor networks in industrial environments. In Computer Standards & Interfaces (p. 103417).

    Google Scholar 

  4. Poornima, I. G. A., & Paramasivan, B. (2020). Anomaly detection in wireless sensor network using machine learning algorithm. In Computer communications.

    Google Scholar 

  5. Moridi, E., Haghparast, M., Hosseinzadeh, M., & Jassbi, S. J. (2020). Fault management frameworks in wireless sensor networks: A survey. In Computer communications.

    Google Scholar 

  6. Gawas, M. A., & Govekar, S. S. (2019) A novel selective cross layer based routing scheme using aco method for vehicular networks. Journal of Network and Computer Applications, 143, 34–46.

    Google Scholar 

  7. Zhang, G., Min, W., Duan, W., & Huang, X. (2018). Genetic algorithm based qos perception routing protocol for vanets. Wireless Communications and Mobile Computing.

    Google Scholar 

  8. Santosh Kumar Das and Sachin Tripathi. (2018). Intelligent energy-aware efficient routing for manet. Wireless Networks, 24(4), 1139–1159.

    Article  Google Scholar 

  9. Sarkar, D., Choudhury, S., & Majumder, A. (2018) Enhanced-ant-aodv for optimal route selection in mobile ad-hoc network. Journal of King Saud University-Computer and Information Sciences.

    Google Scholar 

  10. Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766.

    Article  Google Scholar 

  11. Abbas, F., & Fan, P. (2018). Clustering-based reliable low-latency routing scheme using aco method for vehicular networks. Vehicular Communications, 12, 66–74.

    Article  Google Scholar 

  12. Das, S. K., Kumar, A., Das, B., & Burnwal, A. P. (2013). On soft computing techniques in various areas. Comput. Sci. Inf. Technol., 3, 59.

    Google Scholar 

  13. Das, S. K., & Tripathi, S. (2016). Energy efficient routing protocol for manet using vague set. In Proceedings of fifth international conference on soft computing for problem solving (pp. 235–245). Heidelberg: Springer.

    Google Scholar 

  14. Kaiwartya, O., & Kumar, S. (2014). Geocasting in vehicular adhoc networks using particle swarm optimization. In Proceedings of the international conference on information systems and design of communication (pp. 62–66).

    Google Scholar 

  15. Lobiyal, D. K., Katti, C. P., & Giri, A. K. (2015). Parameter value optimization of ad-hoc on demand multipath distance vector routing using particle swarm optimization. Procedia Computer Science, 46, 151–158.

    Article  Google Scholar 

  16. Mandhare, V. V., Thool, V. R., & Manthalkar, R. R. (2016). Qos routing enhancement using metaheuristic approach in mobile ad-hoc network. Computer Networks, 110, 180–191.

    Article  Google Scholar 

  17. Santosh Kumar Das & Sachin Tripathi. (2018). Adaptive and intelligent energy efficient routing for transparent heterogeneous ad-hoc network by fusion of game theory and linear programming. Applied Intelligence, 48(7), 1825–1845.

    Article  Google Scholar 

  18. Wagh, M. B., & Gomathi, N. (2018). Route discovery for vehicular ad hoc networks using modified lion algorithm. Alexandria Engineering Journal, 57(4), 3075–3087.

    Google Scholar 

  19. Li, K.-H., & Leu, J.-S. (2015). Weakly connected dominating set-assisted ant-based routing protocol for wireless ad-hoc networks. Computers & Electrical Engineering, 48, 62–76.

    Article  Google Scholar 

  20. Bera, S., Chattopadhyay, M., & Dan, P. K. (2018). A two-stage novel approach using centre ordering of vectors on agglomerative hierarchical clustering for manufacturing cell formation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(14), 2651–2662.

    Google Scholar 

  21. Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy-efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.

    Article  Google Scholar 

  22. Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14–15), 2826–2841.

    Google Scholar 

  23. Singh, J., Singh, A., & Shree, R. (2011). An assessment of frequently adopted unsecure patterns in mobile ad hoc network: Requirement and security management perspective. International Journal of Computer Applications, 24(9), 0975–8887.

    Google Scholar 

  24. Singh, J., Banka, H., & Verma, A. K. (2019). A bbo-based algorithm for slope stability analysis by locating critical failure surface. Neural Computing and Applications, 31(10), 6401–6418.

    Google Scholar 

  25. Binh, H. T. T., Hanh, N. T., Dey, N., et al. (2018). Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Computing and Applications, 30(7), 2305–2317.

    Google Scholar 

  26. Yang, W., Wang, X., Song, X., Yang, Y., & Patnaik, S. (2018). Design of intelligent transportation system supported by new generation wireless communication technology. In Intelligent systems: Concepts, methodologies, tools, and applications (pp. 715–732). IGI Global.

    Google Scholar 

  27. Jia, D., Zou, S., Li, M., & Zhu, H. (2016). Adaptive multi-path routing based on an improved leapfrog algorithm. Information Sciences, 367, 615–629.

    Google Scholar 

  28. Saritha, V., Venkata Krishna, P., Misra, S., & Obaidat, M. S. (2017). Learning automata based optimized multipath routingusing leapfrog algorithm for vanets. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–5). IEEE.

    Google Scholar 

  29. Bera, S., Das, S. K., & Karati, A. (2020). Intelligent routing in wireless sensor network based on african buffalo optimization. In Nature Inspired Computing for Wireless Sensor Networks (pp. 119–142). Berlin: Springer.

    Google Scholar 

  30. Kadono, D., Izumi, T., Ooshita, F., Kakugawa, H., & Masuzawa, T. (2010). An ant colony optimization routing based on robustness for ad hoc networks with gpss. Ad Hoc Networks, 8(1), 63–76.

    Article  Google Scholar 

  31. Vinoba, R., & Vijayaraj, M. (2020). Novel control topology with obstacle detection using rdpso-gba in mobile ad-hoc network. Computer Communications.

    Google Scholar 

  32. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Google Scholar 

  33. Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. Grey wolf optimizer: a review of recent variants and applications. Neural Computing and Applications, 30(2), 413–435.

    Google Scholar 

  34. Chao, L., Gao, L., Li, X., & Xiao, S. (2017). A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Engineering Applications of Artificial Intelligence, 57, 61–79.

    Article  Google Scholar 

  35. Jiang, T., & Zhang, C. (2018). Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop scheduling cases. IEEE Access, 6, 26231–26240.

    Article  Google Scholar 

  36. Pradhan, M., Roy, P. K., & Pal, T. (2016). Grey wolf optimization applied to economic load dispatch problems. International Journal of Electrical Power & Energy Systems, 83, 325–334.

    Google Scholar 

  37. Mohamed, A. A. A., El-Gaafary, A. A. M., Mohamed, Y. S., & Hemeida, A. M. (2016). Multi-objective modified grey wolf optimizer for optimal power flow. In 2016 eighteenth international middle east power systems conference (MEPCON) (pp 982–990). IEEE.

    Google Scholar 

  38. Gupta, E., & Saxena, A. (2016). Grey wolf optimizer based regulator design for automatic generation control of interconnected power system. Cogent Engineering, 3(1), 1151612.

    Article  Google Scholar 

  39. Qiang, T., Chen, X., & Liu, X. (2019). Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing, 76, 16–30.

    Article  Google Scholar 

  40. Yao, P., Wang, H., & Ji, H. (2016). Multi-uavs tracking target in urban environment by model predictive control and improved grey wolf optimizer. Aerospace Science and Technology, 55, 131–143.

    Article  Google Scholar 

  41. Katarya, R., & Verma, O. P. (2018). Recommender system with grey wolf optimizer and fcm. Neural Computing and Applications, 30(5), 1679–1687.

    Google Scholar 

  42. Mirjalili, S. (2015). How effective is the grey wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1), 150–161.

    Article  Google Scholar 

  43. Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). Gwo-lpwsn: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. Journal of Computer Networks and Communications.

    Google Scholar 

  44. Emary, E., Zawbaa, H. M., Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.

    Google Scholar 

  45. Yang, B., Zhang, X., Tao, Y., Shu, H., & Fang, Z. (2017). Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy conversion and management, 133, 427–443.

    Article  Google Scholar 

  46. Teng, Z.-J., Lv, J.-L., & Guo, L.-W. (2018). An improved hybrid grey wolf optimization algorithm. In Soft Computing (pp. 1–15).

    Google Scholar 

  47. Shan, L., Qiang, H., Li, J., & Wang, Z.-Q. (2005). Chaotic optimization algorithm based on tent map. Control and Decision, 20(2), 179–182.

    MATH  Google Scholar 

  48. Zhu, A., Chuanpei, X., Li, Z., Jun, W., & Liu, Z. (2015). Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3d stacked soc. Journal of Systems Engineering and Electronics, 26(2), 317–328.

    Article  Google Scholar 

  49. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, Vol. 1. MIT Press.

    Google Scholar 

  50. Rodríguez, L., Castillo, O., & Soria, J. (2016). Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 3116–3123). IEEE.

    Google Scholar 

  51. Malik, M. R. S., Rasul Mohideen, E., & Ali, L. (2015). Weighted distance grey wolf optimizer for global optimization problems. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1–6). IEEE.

    Google Scholar 

  52. Rodríguez, L., Castillo, O., Soria, J., Melin, P., Valdez, F., Gonzalez, C. I., Martinez, G. E., Soto, J. (2017). A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Applied Soft Computing, 57, 315–328.

    Google Scholar 

  53. Kishor, A., & Singh, P. K. (2016). Empirical study of grey wolf optimizer. In Proceedings of Fifth International Conference on Soft Computing for Problem Solving (pp. 1037–1049). Berlin: Springer.

    Google Scholar 

  54. Tawhid, M. A., & Ali, A. F. (2017). A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic Computing, 9(4):347–359, 2017.

    Google Scholar 

  55. Jitkongchuen, D. (2015). A hybrid differential evolution with grey wolf optimizer for continuous global optimization. In 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 51–54). IEEE.

    Google Scholar 

  56. Kamboj, V. K. (2016). A novel hybrid pso-gwo approach for unit commitment problem. Neural Computing and Applications, 27(6), 1643–1655.

    Google Scholar 

  57. Saremi, S., Mirjalili, S. Z., & Mirjalili, S. M. (2015) .Evolutionary population dynamics and grey wolf optimizer. Neural Computing and Applications, 26(5), 1257–1263.

    Google Scholar 

  58. Mahdad, B., & Srairi, K. (2015). Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms. Energy Conversion and Management, 98, 411–429.

    Google Scholar 

  59. Singh, N., & Singh, S. B. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. Journal of Applied Mathematics.

    Google Scholar 

  60. Mittal, N., Singh, U., & Sohi, B. S. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing, 8.

    Google Scholar 

  61. Zhang, S., & Zhou, Y. (2015). Grey wolf optimizer based on powell local optimization method for clustering analysis. Discrete Dynamics in Nature and Society.

    Google Scholar 

  62. Sahoo, A., & Chandra, S. (2017). Multi-objective grey wolf optimizer for improved cervix lesion classification. Applied Soft Computing, 52, 64–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiran Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, S., Das, S.K., Ghosh, J. (2021). An Efficient Routing in Wireless Sensor Network: An Application of Grey Wolf Optimization. In: Das, S.K., Dao, TP., Perumal, T. (eds) Nature-Inspired Computing for Smart Application Design. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-33-6195-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6195-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6194-2

  • Online ISBN: 978-981-33-6195-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics